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Abstract

We present an algorithm for fast, physically accurate sim-
ulation of deformable objects suitable for real time ani-
mation and virtual environment interaction. We describe
the boundary integral equation formulation of static linear
elasticity as well as the related Boundary Element Method
(BEM) discretization technique. In addition, we show how
to exploit the coherence of typical interactions to achieve
low latency; the boundary formulation lends itself well to a
fast update method when a few boundary conditions change.
The algorithms are described in detail with examples from
ArtDefo, our implementation.

1 Introduction

Simulation of deformable objects is a key challenge, with a
long history in computer graphics. Deformable object mod-
els are important because so much of our physical world can
not be modeled as rigid bodies. The most important exam-
ples are, of course, humans, human tissue, and human-like
characters. We conjecture that one reason for the preponder-
ance of robotic, wooden, and chitinous characters in recent
computer animation is the difficulty of realistic deformable
object simulation.

Simulating deformable objects for graphics is difficult be-
cause of the conflicting demands of interactivity and accu-
racy. In animation, the simulation must be fast enough to
provide useful feedback to the animator. In virtual envi-
ronments, the objects must deform in real time, in response
to user input. In surgical training and games with haptic
force feedback, forces due to the deformation must also be
computed in real time.

On the other hand, physical accuracy is important since
it allows users to treat deformable objects as “black boxes”
and focus on the their primary objectives. In animation, it
allows an animator to focus on the action rather than on
surface tweaking. In surgical simulation, the contact forces
felt by the surgeon must be accurate — this increases the
likelihood that the surgeon has acquired useful manual skills
for real surgeries, rather than skill at a new video game.

As a result of these conflicting demands, work to date
can be broadly classified into two categories. (1) Interac-
tive models: in these models, speed and low latency are
paramount and physical accuracy is secondary. Typical ex-
amples include mass-spring models and spline surfaces used
as deformable models. (2) Accurate models: in these mod-
els, physical accuracy is paramount; the models start with
the constitutive laws of the material and solve the resulting
boundary value PDE’s numerically using, for instance, the
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Figure 1: Example of interactive simulation with ArtDefo.
Here, a human-like character is being tickled by its alien ab-
ductors. The body is rendered as a Loop subdivision surface.

Finite Element Method (FEM). The models are computa-
tionally expensive and are typically simulated off-line.

In this paper we describe a physically based algorithm for
deformable object simulations which makes this tradeoff un-
necessary for many applications in which linear elastic mod-
els are sufficient. Interactive speeds as well as accuracy are
attained by exploiting the fact that a linear model allows
many system responses (Green’s functions) to be precom-
puted and then combined later in real time using an incre-
mental low-rank update solution reconstruction approach.
Our linear elastic model is based on boundary integrals and
the Boundary Element Method (BEM). While the low rank
update approach could in fact be applied to any discrete lin-
ear system, it is particularly convenient and instructive us-
ing a BEM discretization. The solver’s low latency success
is due in part to the limited amount of nonzero boundary
data associated with typical interactions.

This model has been implemented in our system, Art-

Defo, using Java. We chose Java for integration into
our software environment and for easy accessibility from
the Internet. Despite the performance penalty imposed
by current Java virtual machines for numerical array-based
computations, our system provides good interactive per-
formance for the examples described in this paper. Visit
www.cs.ubc.ca/~djames/deformable for online demos.

Figure 1 shows an interactive simulation in which the torso
of the character is deformable. The deformation and result-
ing contact forces due to a virtual finger or medical instru-
ment touching a location on the torso were computed in
approximately a millisecond after an initial cost of several
milliseconds on an ordinary 350MHz PC. The global defor-
mation is accurately computed and important phenomena
such as the upward bulging of the torso due to the preserva-
tion of volume are automatically produced.

An important feature is that since our model is physically
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Figure 2: Notation

based, deformable objects are also easier to create and mod-
ify; the object’s deformation behavior is specified using a few
material properties rather than by adjusting a large number
of spring constants and other parameters. Material proper-
ties for standard objects can be looked up in a handbook,
and properties can be modified in intuitive ways by making it
“more compressible (sponge-like)” “less stiff,” “more dense”
etc. We can easily represent physical constraints, such as
incompressibility, which are difficult for deformable models
based on spring networks and splines.

Finally, even though the technique has somewhat com-
plex mathematical foundations, it is easy to implement. We
describe the basic algorithms in sufficient detail to allow im-
plementation. We bring out the connections between defor-
mation computations and radiosity methods in global illu-
mination. This will allow rendering professionals to easily
understand and implement fast simulations of deformation.

The paper is organized as follows. In §2 we present an
overview of all the important techniques in this paper. Con-
nections to related work are discussed in §3. In subsequent
sections §4–7 we provide details of the algorithms, with spe-
cific integrals needed for the constant element case collected
in the Appendix.

2 Overview

We describe the key ideas in our system in this section, at a
high level. Details are provided in the sections that follow.

2.1 Linear Elasticity

Our model is physically based and starts with the physics of
static linear elastic deformation. Linear elasticity accurately
models small deformations of objects and is commonly used
in engineering analysis. Biological tissues and large deforma-
tions will involve additional non-linear effects; nevertheless,
linear models can play an important role in a hybrid simula-
tion given that they can be significantly cheaper to evaluate.

We use the following notation (see Figure 2) which is stan-
dard (e.g., [5]). The domain of the deformable object is de-
noted Ω ⊂ R3 with boundary Γ. A point x ∈ Ω undergoes a
displacement u due to deformation. The deformation is gov-
erned locally by Navier’s equation (described in §4) which is
a generalization of Hooke’s law from high school physics. It
is written

Nu + b = 0, (1)

where N is a linear second-order differential operator, and b
is a term due to “body forces” like gravity which act every-
where in the body. Navier’s equation must be satisfied at all
points x ∈ Ω; N, u, and b are functions of x. N encodes all
the elastic material properties of the object. For simplicity,
we will assume b=0 in the remainder of this section.

2.2 Boundary Value Problem

To specify the deformation, we must also describe how the
object interacts with the environment at its boundary Γ.
We may want to specify displacement boundary conditions
on some parts of the boundary (denoted Γu). For instance,
we can indicate that the boundary is in contact with a rigid
table or is being poked by a virtual finger whose motion is
known (e.g., through a motion tracker attached to the user’s
hand). In other parts of the boundary (denoted Γp), it may
be more natural to specify the force or rather the traction,
p, which is defined as the force per unit area (and has the
same units as pressure). These traction boundary conditions
are useful for specifying that the boundary is free to move
(zero traction).

The boundary conditions, along with Navier’s equation,
constitute the boundary value problem (BVP). Changing the
type of a boundary condition changes the BVP significantly,
which is an important consideration we will return to in §2.5.

2.3 Boundary Integral Formulation

In graphics applications, we are primarily interested in deter-
mining the displacement u and traction p on the boundary
of the body. The boundary displacement u is needed for
rendering while the boundary traction p is needed for force
feedback user interfaces. Therefore it is possible to use a
boundary integral formulation of Navier’s equation,

cu +

Z
Γ

p∗u dΓ =

Z
Γ

u∗p dΓ. (2)

Here c is a (known) function that depends only on the ge-
ometry of the boundary, and u∗ and p∗ are fundamental
solutions which depend only on known elasticity properties.

A key advantage of the boundary integral formulation is
that all the unknowns are on the boundary Γ, and are exactly
the quantities we are interested in. In contrast, the FEM has
unknowns in the interior as well.

For an excellent survey of boundary integral equation is-
sues we refer the reader to [2].

We remark that boundary integral equations also arise
in global illumination in the form of the Rendering Equa-
tion [17], where it is derived from the physics of radiative
energy transport. Therefore many of the same issues arise
in solving such integral equations. There are also important
differences; equation 2 is a vector integral equation instead
of a scalar equation, and far from being a Fredholm integral
equation of the second kind, the vector equation involves
both single and double layer potential integral operators [2].

2.4 Numerical Discretization

To solve equation 2 numerically, it is discretized by approxi-
mating u, u∗, etc., in finite dimensional function spaces. We
discuss the choice of these spaces in §6 when we discuss the
BEM, but in the end the integral equation is reduced to a
matrix equation of the form

Hu = Gp, (3)

where u is a vector of displacements ui = u(xi), sampled
at a finite set of nodes xi, i = 1, . . . , n, on the boundary,
and p are the corresponding tractions at these nodes. For
the constant boundary element we describe in §6, xi are the
centroids of boundary triangles.

The 3n× 3n dense matrices H and G are discretized ver-
sions of the operators on the left and right and sides of (2),



respectively. They are analogous to the form factors com-
puted in radiosity methods.

Finally, specifying boundary conditions, either u or p, at
each of the n nodes, yields a system of equations for the
unknown nodal quantities:

Av = z. (4)

Since A depends on the BVP specified, it is not possible to
simply invert A ahead of time. Nor is it realistic to invert
and store all possible matrices ahead of time.

2.5 Interactive Deformation

Equation 4 is still prohibitively expensive to solve at interac-
tive rates for even moderate size problems consisting of a few
hundred surface nodes. This is so even though fast transform
and iterative methods are available for solving (4). There-
fore solving the discrete equations directly in real time is
not necessarily suitable for an interactive method. This is
especially true when it is possible to do much of the work
ahead of time.

In a typical situation a user may, say, poke the deformable
object with a virtual finger, and then move the finger along
its surface. As mentioned, this process is accompanied by a
sequence of different matrix problems to be solved.

We address this issue by observing that, for example,
as the user makes or breaks contact with a surface node
only 3 columns of A change. This implies that there is a
great degree of similarity between these matrix BVP prob-
lems. We can then compute the solution to the new prob-
lem efficiently using results obtained directly from using the
Sherman-Morrison-Woodbury formula [12]. We describe this
procedure in detail in §7 — we mention here that if s bound-
ary conditions change, we spend O(s3) time updating a set
of weights, after which correct solutions can be computed,
with each using an additional O(ns) time. While complexity
analysis isn’t indicative of interactivity, we find that these
solution methods are very fast in practice. Also, since this
is a direct solution method, latency bounds are strictly re-
lated to s. Hence the real-time performance can be easily
predicted.

With the boundary integral formulation and our optimiza-
tions, we are able to accurately simulate deformation prob-
lems on ordinary PCs at interactive rates, even with chang-
ing boundary conditions. The high cost usually associated
with deformation computations is relegated to precomputa-
tion and storage of the database used by the fast run-time
solver.

3 Related Work

There has been considerable work in the area of deformable
models in graphics. We refer the reader to a recent, thorough
survey [10] which describes much of this work. We mention
some relevant physically based models here, which include
cloth models (e.g., [4]), linked volumetric objects [11], modal
models [23] and the pioneering work of Terzopoulos and col-
leagues [26, 24, 25, 22]. In the following we focus mainly
on models specifically designed to simulate physical defor-
mation of objects, rather than purely geometric deformable
models.

Among physically-based models, the most popular are
mass-spring models (e.g., [4, 19, 28]). They divide the do-
main Ω into set of mass points connected by springs. The
technique is effective for several applications, can be used

for static as well as dynamic deformations, and has been ex-
tended to model non-linear materials and even liquids [27].
However, despite the simplicity of formulation, the result-
ing systems can be expensive to solve; the inaccuracy of the
method implies that a larger number of nodes are required
for realistic simulations (compared to FEM and BEM tech-
niques), and these result in larger system matrices. Numeri-
cal stiffness is also a problem [3]. The model parameters are
difficult to tune and can easily produce undesired Jello-like
or putty-like behavior. Worse, common properties of mate-
rials like incompressibility are difficult to model. In contrast
our model (and others explicitly based on Navier’s equation)
can be tuned using a few, well-known material properties;
incompressibility is trivial to specify using Poisson’s ratio
ν = 1

2 .

The Finite Element Method (FEM), a widely used, flexi-
ble and accurate method for solving Navier’s equations, has
seen application in graphics [13, 7, 8, 6]. However, its use
has been limited by the complexity of the method and the
cost of solving the resulting linear system.

While FEM techniques are effective general tools for (es-
pecially nonlinear) elasticity, we believe that the BEM, on
which our technique is based, has certain features which will
be of interest to the graphics community. These methods
also have a long history in engineering analysis (e.g., [5, 9]).
Radiosity methods for global illumination are closely related
and are essentially boundary element methods [1, 20]. To our
knowledge, BEM techniques have not been used in computer
graphics for the simulation of deformable objects.

In BEM, the unknowns are only the boundary displace-
ments and forces — exactly the quantities we need in graph-
ics and haptics. This is in contrast with many engineering
applications, in which stresses and deformations inside the
body are important for determining properties of a struc-
ture, making FEM more natural. The BEM leads to a small
but dense set of well–conditioned equations which are sim-
ple to solve; the FEM leads to a larger, but sparse, set of
equations which can be solved efficiently using sparse ma-
trix techniques. Fast solution methods exist for FEM, e.g.,
multigrid; numerous fast integral transform methods exist
for BEM [2]. The BEM is also more accurate for computing
contact forces than the FEM since forces are solved for just
like displacements, instead of being derived from displace-
ments using difference formulas [5]. As a result, the BEM
easily handles mixed boundary conditions. And, perhaps
of greatest interest, the BEM can use the same boundary
discretization as used for rendering — no separate meshing
is required; in FEM the interior has to be meshed as well.
However, while the boundary-only nature of the BEM is a
selling point, it also restricts the class of materials which it
can handle to those with homogeneous material properties.
A few regions with different material properties can be han-
dled using BEM by introducing internal boundaries, but for
complicated inhomogeneities a domain method, such as the
FEM, is better.

Our use of the Sherman-Morrison-Woodbury formula to
exploit coherence between deformable is related to the tech-
nique used in the FEM community called “structural re-
analysis” [14, 18]. Unfortunately, due to the overhead in-
troduced by internal domain nodes, these methods are not
necessarily suitable for interactive applications. A notable
exception is the work of [6] and colleagues; they perform var-
ious linear system optimizations, similar to those presented
here, and eliminate interior nodes, using a technique called
condensation, to achieve a boundary-only representation.



4 Navier’s Equation

Linear elastostatic objects with isotropic and homogeneous
material properties, have displacements satisfying the well-
known Navier’s equation on Ω,

G

3X
k=1

�
∂2ui
∂x2

k

+
1

1− 2ν

∂2uk
∂xk∂xi

�
+ bi = 0, (5)

which is conveniently written in a vector operator form as

(Nu) (x) + b(x) = 0, x ∈ Ω. (6)

Here ν is Poisson’s ratio and G is the shear modulus. These
are material properties which can be found in handbooks
for many materials. Suitable values for Poisson’s ratio are
0 < ν ≤ 1

2
, with ν = 1

2
corresponding to an incompressible

material. The shear modulusG is positive, with larger values
resulting in larger forces accompanying a given deformation.
Figure 4 shows the effect of changing ν; see also Figure 3.

(a) (b)

Figure 3: A test nodule is pinched between two fingers. The
nodule is a Loop subdivision surface, whose control poly-
hedron is an octahedron. The boundary of one face of the
octahedron is tagged as “sharp” [16] and leads to a sharp
edge around the bottom face of the object. We impose a
zero-displacement boundary condition on this face, and zero
traction everywhere else, except for the two finger contacts.

(a) (b) (c)

Figure 4: Poisson’s ratio, ν, provides an easy way to describe
the compressibility of a material. Figure (a) shows the ex-
ample nodule in its rest state. A coarse reference mesh is
also shown in white on the surface. In figure (b), ν = 0.01,
making the material very compressible; the nodule exhibits a
sponge-like behavior, deforming mainly in the vicinity of the
contact. In Figure (c) ν = 0.5, making the material incom-
pressible; the sides of the nodule bulge to conserve volume.

The traction at a point on the surface is

pi = pi(x) = G
3X
j=1

�
∂ui
∂xj

+
∂uj
∂xi

�
nj+

2Gν

1− 2ν
ni

 
3X
k=1

∂uk
∂xk

!

where ni are the direction cosines of the outward normal. In
a vector operator notation this becomes

p(x) = (Pu) (x), x ∈ Γ. (7)

5 Boundary Integral Formulation

Similar to Laplace’s equation, Navier’s equation on a do-
main may be converted to an integral equation defined on
the boundary of that domain. At the heart of the derivation
is integration by parts, which produces boundary integrals
from volume integrals. The end result is that Navier’s equa-
tions (5) on, for example, a bounded domain may be con-
verted into a set of integral equations. The direct boundary
integral equation formulation yields the vector integral equa-
tion

c(x)u(x) +

Z
Γ

p∗(x, y)u(y)dΓ(y) (8)

=

Z
Γ

u∗(x, y)p(y)dΓ(y) +

Z
Ω

u∗(x,y)b(y) dΩ(y)

valid at a point x on the boundary Γ [5]. Three matrix
functions occur in this equation:

c = c(x) = [cij],

u∗ = u∗(x, y) = [u∗ij],

p∗ = p∗(x, y) = [p∗ij].

The integral kernel functions u∗ij(x,y) and p∗ij(x, y) are
known fundamental solutions and tractions, respectively,
and are provided in the next section. The coefficient cij(x)
depends on the smoothness properties of the boundary at x,
but is not needed explicitly (see Appendix A.2.1).

5.1 Fundamental Solutions

The fundamental solutions of Navier’s equation, u∗ij(x,y),

correspond to the displacement in the jth direction at a field
point, y, as produced by a unit point load applied in each
of the i directions at a specified load point, x, in an infinite
linear elastic medium. This corresponds to the fundamental
solution due to Kelvin [21]. Conceptually, this point load
fundamental solution plays an analogous role in elasticity
as the familiar 1

r
Coulomb potential solution accompanying

a point charge in electrostatics. In both cases, the funda-
mental solutions are highly localized and decay very quickly,
e.g., the fundamental displacements have a typical 1

r charac-

ter while the fundamental tractions behave like 1
r2

. Mathe-

matically, u∗ij(x,y) is the jth component of the displacement
solution to

(Nu) (y) + δ(x− y)êi = 0,

where the vector operator notation from (6) has been used.
The fundamental tractions are related to the fundamental
displacements via (7), that is

p∗ = Pu∗.

Expressions for the fundamental solutions are [5]

u
∗
ij(x, y) =

1

16π(1− ν)G

�
(3− 4ν) δij

r
+
rirj

r3

�

p
∗
ij(x,y) =

(1− 2ν)

8π(1− ν)

�
(rinj−rjni)

r3
−
�
δij

r2
+

3rirj

(1− 2ν) r4

�
∂r

∂n(y)

�

where



r = y−x

ri = (r)i

r = |r|
∂r

∂n(y)
=

r · n(y)

r

and n(y) is the outward unit normal at y ∈ Γ.

5.2 Internal Body Forces

Any user-specified body forces mildly complicate the
boundary-only character of the integral equations, as they
introduce a volume integral term in (8). However, for certain
classes of functions, e.g., polynomials, it is possible to ana-
lytically convert the volume integral into a boundary integral
using essentially repeated integration by parts via the Mul-
tiple Reciprocity Method [5]. For example, a constant gravi-
tational force, b=ρg, may be evaluated as a boundary inte-
gral. More simply, concentrated force loads, b=b0δ(x−x0),
are trivial to integrate, and are useful for introducing inter-
nal body articulation. Due to space limitations, the body
force term will not be mentioned hereafter.

6 The Boundary Element Method

The Boundary Element Method (BEM) is a straight-forward
approach to discretizing integral equations defined on the
boundary via a collocation method. There are three main
steps when implementing the BEM in 3D:

1. Discretize the boundary Γ into a set of N non-
overlapping elements which represent the displacements
and tractions by functions which are piecewise interpo-
lated between the element’s nodal points.

2. Apply the integral equation(s) at each of the n bound-
ary nodes, and perform the resulting integrals over each
boundary element in order to generate an undetermined
system of 3n equations involving the 3n nodal displace-
ments and 3n nodal tractions.

3. Apply the boundary conditions of the desired boundary
value problem, fixing n nodal values (either displace-
ment or traction) per direction. The remaining linear
system of 3n equations is determined and may be solved
to obtain the unknown nodal boundary values.

Drawing on the notation from [5], the discretization of (8),
dropping the body force, may be summarized as follows. The
piecewise interpolated displacement and traction functions
evaluated at the point x may be written as

u = u(x) = (u1, u2, u3)T = Φ(x)u (9)

p = p(x) = (p1, p2, p3)T = Φ(x)p

where Φ(x) is an interpolation matrix and u and p are n-
vectors of the nodal displacement and traction 3-vectors,

respectively, e.g., u = [u1, . . . , un]T .

The displacement, traction and c vectors at the ith node,
xi, will be denoted by

ui = u(xi), pi = p(xi), ci = c(xi),

respectively. Substituting (9) into the elasticity integral
equation (8) applied at xi and converting the surface in-
tegrals into sums of integrals over each boundary element,

one obtains

ciui +

NX
j=1

 Z
Γj

p∗(xi,y) Φ(y) dΓ(y)

!
u

=

NX
j=1

 Z
Γj

u∗(xi, y) Φ(y) dΓ(y)

!
p

which, in an obvious notation, may be written as

ciui +
nX
j=1

ĥijuj =
nX
j=1

gijpj. (10)

For convenience, define off-diagonal hij as ĥij , but let

hii = ci + ĥii.

Assembling the equations at all nodes into a block matrix
system yields

nX
j=1

hijuj =

nX
j=1

gijpj or Hu = Gp. (11)

The final step is to specify the boundary conditions at each
of the n nodes, then bring the unknowns to the left-hand
side, and the knowns to the right-hand side to obtain the
final linear system

Av = z, (12)

which may be solved for the unknown nodal quantities, v.

All that remains is to determine the integrals for the
matrix entries of H and G. Indeed, this is the part of the
BEM which takes the majority of a computation. Complete
formulae for constant boundary elements, are provided in
the Appendix for those who are interested in constructing
their own elasticity solver. It is the simplest element for the
reader to implement and understand. Formulae for linear
elements may be found in [15].

6.1 Constant Element Case

Analogous to the midpoint rule for integrating a univari-
ate function, integration of a triangular constant element is
accomplished using data located at the centroid. This cor-
responds to a centroid collocation scheme, as the jth node,
xj, is identified as the centroid of the jth element, and is
where the elastic state is represented accurately. In this
case n = N . Since the collocation node lies in the element’s
interior, it is called a nonconforming element. This happens
to make the element particular easy to implement, as con-
nectivity is not required. It also has the convenient casual
property that special care need not be taken to accommo-
date corners or sharp edges [5].

7 Interactive simulation

To solve equation 12 at interactive rates, we exploit the co-
herence of typical deformable object interactions. This al-
lows us to achieve low latency at the expense of memory and
precomputation.



7.1 Precomputation

Suppose A0 is the matrix in (12) corresponding to a par-
ticular reference BVP. In the following, we assume that we
have precomputed A−1

0 H and A−1
0 G. Note that only half of

the columns from the last two matrices require storage since
A0 consists of columns of G and H, and A−1

0 A0 = I. In gen-
eral, several such reference BVPs can be precomputed and it
is possible to perform this computation adaptively in a low
priority thread.

We remind the reader that to simplify indexing, A0, H,
etc., are 3× 3 block matrices; similarly v, z, etc., are block
column matrices whose elements are 3D vectors.

7.2 Changing boundary values

The simplest case of coherence occurs for the reference BVP
when there is a change in some boundary values of the ref-
erence BVP. The new solution can be computed in time
O(n(|Su|+ |Sp|)) as

v(0) = vunchanged+
X
j∈Su

(−A−1
0 Hj) δūj+

X
j∈Sp

(A−1
0 Gj) δp̄j (13)

where δūj and δp̄j are changes in the specified boundary

values, Gj (respectively Hj) represents the jth column of G
(resp. H), and Su and Sp are mutually exclusive sets indi-
cating where specified displacements and tractions, respec-
tively, are changing. The term vunchanged represents already
computed contributions from unchanged or previous bound-
ary values, and provides a way to avoid somewhat redundant
vector summations. If present, (un)changing parameterized
body forces are handled in a similar manner.

7.3 Changing boundary conditions

The more difficult case occurs if the type of a boundary con-
dition changes; for instance, a new contact between a rigid
virtual finger and deformable object will change a traction
condition to a displacement one. The system matrix A0 it-
self changes and can introduce unacceptable latencies if we
have to solve the linear system afresh.

The key to fast computation is to realize: (1) Typically
only a few columns of A0 change; and (2) the columns change
in very specific ways: a column of A0 which originated
in (−H) is replaced by the corresponding column of G, or
vice-versa. We exploit (1) by using the Sherman-Morrison-
Woodbury formula; we exploit (2) by extracting large parts
of the formula from the precomputed matrices listed in §7.1

7.3.1 The Sherman-Morrison-Woodbury Formula

Expressions relating the inverse of a matrix to the inverse of
the matrix after it has undergone some minor changes are
well-known from linear algebra and have enjoyed numerous
applications [14]. Essentially, given our square block matrix
A0 and its inverse A−1

0 , as well as a second square matrix AS

which is related to the first matrix by a rank 3s change,

AS = A0 + RST,

where R and S have s block columns, the Sherman-Morrison-
Woodbury (SMW) formula [12], provides an expression for
the inverse of the second matrix as

A−1
S = A−1

0 − A−1
0 R

�
I + STA−1

0 R
�−1

STA−1
0 . (14)

However, explicit calculation of the inverse is not our intent.
We can do better by using the formula to efficiently evaluate
A−1

S z matrix-vector multiplications as shown below.

7.3.2 The Fast Update Process

If the type of boundary condition on node j changes, only
the jth column of A0 changes; let Lj denote the column that
is replaced, and let Mj be its replacement. As described in
§6, these columns are either (−Hj) or Gj. Now suppose s
boundary conditions change (corresponding to nodes j ∈ S,
where S is an index set). Let L be the n× s matrix whose
columns are replaced by those of M, and let δAS = M− L.
Formally, we can write the change in A0 as

AS = A0 + δAS ET

where E is the n× s submatrix of the n× n identity matrix,
consisting of columns j ∈ S.

Applying the SMW formula to A−1
S z and grouping terms,

A−1
S z=(A−1

0 z)−(A−1
0 δAS)

�
I + ET(A−1

0 δAS)
�−1

ET(A−1
0 z), (15)

we obtain a formula that can be transcribed into an effi-
cient algorithm for computing the new solution v for general
boundary data when s boundary conditions have changed.

The first step is to construct the portion independent of
z that may be reused for other BVPs with A = AS:

1. “Compute” W = A−1
0 δAS. Since δAS = M− L and

A−1
0 L = E, obtaining W only consists of looking up

A−1
0 M in the precomputed A−1

0 G and A−1
0 H matrices.

2. Construct the s-by-s matrix

CS = I + ETW

by extracting rows from W. The matrix CS is tradition-
ally called the capacitance matrix [14].

3. Compute the LU factors of CS [12] and store them for
future use. Denote the LU decomposition by C−1

S .

The total cost is O(s3). Once this has been done, particular
BVPs may be solved efficiently as follows:

1. Construct v(0) = A−1
0 z efficiently as in (13).

2. Extract rows of v(0) to make ETv(0).

3. Apply C−1
S to the s-vector ETv(0).

4. Apply W to the s-vector (C−1
S ETv(0)) and subtract the

result from v(0) to obtain the final solution v.

After the initial construction of v(0), whose cost is
O(n(|Su|+ |Sp|)), the solve only costs O(ns) operations.

8 Conclusions

We have described a fast method for simulating linear elas-
tic deformable objects in interactive applications. We have
used the boundary element method for linear elasticity, and
have shown that it is a useful tool for graphics applications,
due to its boundary-only nature, accuracy, and simplicity
of implementation. It is particularly useful for interactive



Figure 5: Simulation of a kinematically constrained rigid object contacting a deformable object. This is a difficult problem
because the contact boundary conditions keep changing during the motion. ArtDefo solves such a sequence of problems
quickly by combining precomputed system responses using a rank update procedure. It is possible to perform multiple solves
each frame in order to guarantee unilateral contact constraints are satisfied.

simulation because of the ease of combination with low-
rank update solution approaches derived from the Sherman-
Morrison-Woodbury formula.

Specifically, for the small localized changes in boundary
conditions which are typical of user interaction, the algo-
rithm is linear in the complexity of the boundary discretiza-
tion. It is also fast in practice; we have demonstrated these
results in our system ArtDefo. By precomputing and up-
dating the solver’s component matrices, we can quickly com-
pute the deformation and contact forces during user inter-
action, with low latency. In addition, it is a direct solu-
tion method — this allows accurate prediction of solution
costs which is essential for real time applications. Using our
method, we believe it is now possible to simulate more real-
istic deformable models with real-time user interaction.

A Constant Element Influence Coefficients

When implementing boundary elements, there are always a
number of singular integrals which the user must acquire or
spend some time calculating. In the relatively simple case of
triangular constant elements with centroid collocation, there
are only a few integrals, and they are presented here for
completeness.

A.1 Inter-element Effects

These are integrals corresponding to interactions where the
load point lies at the centroid of a triangle other than the
one being integrated over, i.e., xi /∈ Γj. This includes the

elements of the 3 × 3 matrices gij and ĥij, for i 6= j, and
therefore corresponds to the majority of the integrals. Since
r = |xi − y| is never zero, these are nonsingular integrals
which may easily be calculated using standard numerical
quadrature (see Brebbia [5]).

A.2 Self-effects

Self-effects correspond to the integrals in the diagonal terms

of equation 11 such as gii and ĥii. Since the load point
lies in the center of the triangle being integrated over, these
are singular integrals, as the fundamental solutions are un-
bounded as r → 0. The first integral is only weakly singular,
while the second integral is strongly singular and only exists
in a Cauchy principle value sense.

A.2.1 Calculation of hii

Despite ĥii being strongly singular, it is easy to calculate
indirectly using rigid body translations by considering a
bounded object with all nodes subjected to any arbitrary

r23

r12

13

α
α

α

θ

r

q

q q

q

1

1

2

2

3

c

3

3

θ1θ2

Y
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Figure 6: Notation

constant displacement boundary conditions, uj = ū,∀j.
Since this body necessarily experiences no induced surface
tractions, pj = 0, ∀j. It follows from (11) that

hii = −
X
j 6=i

hij (16)

and therefore neither ĥii nor ci need be calculated explicitly.
Note that (16) implies that H is a singular matrix.

A.2.2 Calculation of gii

The elements of

(gii)kl =
1

16π(1− ν)G

Z
Γi

�
(3− 4ν) δkl

r
+
rkrl

r3

�
dΓ(y)

will be expressed for a triangle ∆, using the notation in
figure 6, i.e., with vertices at q1, q2, q3, centroid at qc, area
A, and an outward unit normal n̂. Omitting any constant
factors, the first integral is J∆

1 , and the second is

X̂kX̂lJ
∆
1 +

1

2

�
X̂kŶl + X̂lŶk

�
J

∆
2 +

�
ŶkŶl − X̂kX̂l

�
J

∆
3 .

with
X̂ =

q2 − qc

|q2 − qc|
, Ŷ = n̂ × X̂,

and

J
∆
m =

2A

3

�
Jm (θ1, α2, 0)

r23
+
Jm (θ2, α3, 0)

r31
+
Jm (θ3, α1, θ1 + θ2)

r12

�

where

J1 (∆θ, α, θmin) = ln

2
4 tan

�
∆θ+α

2

�

tan
�
α
2

�
3
5



J2 (∆θ, α, θmin) = sin

�
θmin − α

2

�
ln

2
4 tan

�
∆θ+α

4

�

tan
�
α
4

�
3
5

+ cos

�
θmin − α

2

�
ln

2
4
�
1 − tan

�
α
4
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1 + tan

�
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4

�i
�
1 + tan

�
α
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�
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J3 (∆θ, α, θmin) = 2 sin

�
2θmin − α +

∆θ

2

�
sin

�
∆θ

2

�
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