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Abstract standard image mapping results in pattern distortions, discontinu-
ities, and obvious periodicity.

We present a texturing method that correctly maps homogeneous We present a practical solution to this problem, which involves

non-periodic textures to arbitrary surfaces without any of the dif- noincrease in computational or memory cost at rendering time over

ficulties usually encountered using existing tools. Our technique standard image mapping techniques using repetitive patterns. Our

requires little redundant designer work, has low time and memory method works for arbitrary surfaces. It yields little distortion of the

costs during rendering and provides high texture resolution. texture, no singularities whatever the topology of the surface, and
The idea is simple: a few triangular texture samples, which obey no periodicity.

specific boundary conditions, are chosen from the desired pattern

a_nd mapp_ed in a non-periodic fashion onto the surface. Our map-4 1 Related work

ping algorithm enables us to freely tune the scale of the texture

with respect to the object’s geometry, while minimizing distortions. Despite years of CG research and tool development, artists still

Moreover, it yields singularity-free texturing whatever the topology  have difficult (and time consuming) work to do in order to achieve

of the object. The sets of texture samples may be created interacthe texturing of complex surfaces. This paper focuses on homo-

tively from pictures or drawings. We also provide two alternative geneous non-periodic textures, such as those we need for natural

methods for automatically generating them, defined as extensionsobjects (textures may define any surface attribute, such as color,

of Perlin’s and Worley’s procedural texture synthesis techniques.  transparency, normal perturbation or displacement). The two mains
As our results show, the method produces textured objects thatproblems to solve arexture generatiomndtexture mappingLet

look reasonable from any viewpoint and can be used in real-time us review the solutions offered by existing tools:

applications.
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A Standard 2D texture mapping: The first solution consists of
periodic Tiling

mapping a single image of the desired texture onto the synthetic
object. To do this, a global parameterization of the object surface
. is required. As a consequence, there will necessarily be discon-
1 Introduction tinuities of the texture somewhere on the surface if the object is

) ) ) ) closed or has a higher topologic order. Moreover, the texture may
Reproducing the visual complexity of the real world is a dream pe highly distorted if the object has an arbitrary geometry. Op-
for many Computer Graphics practitioners. Since every detail can- timization techniques such as those in [1, 11] can be used to re-
not be modeled at the geometric level, textures are very useful for duce distortions, either locally, or by allowing the introduction of
adding visual complexity to a synthetic scene. They can for instance ‘cracks’, i.e., discontinuities. Entirely suppressing distortions by
be used for representing rocks or vegetation on a distant mountain,editing the mapping is impossible, except if the object's surface can
for simulating animals’ fur or skin, human clothes, or the surface pe unfolded onto a plane (such as a cloth). This is not the case for
aspect of a material. Most of the textures we need for modeling nat- natural shapes. A solution for the user to eliminate apparent texture
ural objects, either mineral, vegetable, or animal, have a common distortions is to draw a pre-distorted texture that will compensate
feature: they may look homogeneous at a large scale (i.e., largefor the distortions due to the mapping. However, this requires high
scale statistical properties do not depend on the location), but no designer skill4, and the work needs to be re-done from scratch for
visible periodicity can be found anywhere. every new object.

Texturing arbitrary shapes with such textures is a challenge for  An alternative is to use pattern-based texture mapping, which
artists, since no CG tool is really adequate to fit real-world con- consists of repetitively mapping a small rectangular texture patch
straints: generating the texture directly on the surface is memory representing a sample of the desired texture pattern onto the sur-
and time consuming (either for the CPU or the artist), while using face. The sample image has to obey specific boundary conditions
in order to join correctly with itself. More precisely, it needs to have
“IMAGIS is a joint project of CNRS, INRIA, Institut National Poly-  a toroidal topology: the texture on the left edge must fit the texture

technique de Grenoble and Univeesiitoseph Fourier. on the right, and respectively the top edge has to fit with the bottom.
Address BP 53, F-38041 Grenoble cedex 09, France Such texture samples can be created by editing pictures or drawings
E-mail [Fabrice.NeyrgdMarie-Paule.Cani@imag.fr using interactive 2D painting systems. An advantage with respect
WWW http:/ww-imagis.imag.fr/ TEXTURES/ to the previous approach is that, being small, the texture sample

will be stored at a higher resolution, and will demand less redun-
dant work by the artist. Moreover, it can be re-used for texturing
other objects. Discontinuity and distortion problems, however, will
be exactly the same as for a single texture map as long as a global
parameterization is used to map the texture pattern. See Figure 1.

It should be be noted that these two techniques are the only meth-
ods available in current graphics hardware. Thus, other representa-
tions or design techniques have to be converted into this represen-
tation for rendering if real time constraints apply.

2This is actually done in practice in industry!
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mapping techniques, with the distortion and discontinuity problems
discussed above. Moreover, this technique would produce patterns
with obvious periodicity, which would probably spoil the natural
appearance of the final object.

Towards non-periodic mapping: Artistic and mathematical

Figure 1:Standard pattern-based mapping used for applying a cellular pat- WOrK on tilings such as those of Escher and Penrose (see for in-
tern onto the geometric model of a liver. Distortions are clearly noticeable. Stance [3, 5, 6]) can also be a source of inspiration. Escher’s draw-
ings include several tilings of the plane with complex shapes such
Interactive techniques: ~ The problem of finding good local pa-  as birds, fishes or reptiles. Penrose studies aperiodic tilings of the
rameterizations for the surfaces is solved in patch-based interactiveplane, and shows that some specific sets of tiles always form non-
texturing systems by leaving the user to tile the surface [12, 14, 15]. periodic patterns.
In [14], the latter interactively subdivides an implicit surface into A first attempt to build a practical application of these ideas to
square patches. Surface geodesics are used for fitting the bortexturing in Computer Graphics is Stam's work on “aperiodic tex-
ders of these patches to the surface. Optimization is then used fortures” [17]. His aim is to render water surfaces and caustics. Stam
deriving a minimally-distorted local parameterization inside each tijles the plane with a standard grid of square patches, where he maps
patch. This approach, which can be extended to parametric sur-16 different texture samples of an homogeneous texture. To do soin
faces as well, can be combined with pattern-based texturing in or- a non-periodic fashion, he uses an algorithm for aperiodically tiling
der to cover an object with a given pattern. However, using a local the plane with convex polygons of different colors [7] (the colors
instead of a global parameterization is not sufficient for avoiding of the tiles in the mathematical theory correspond to the boundaries
texture discontinuities on closed surfaces (to be convinced, try to of texture tiles). The boundary conditions between texture samples
map a texture sample with a toroidal topology onto a cube): tex- are met by using the same input noise for generating the texture in
ture discontinuities will appear across some of the edges, since thethe rectangular regions that surrounds a shared edge. This method
neighboring borders of the sample image cannot be those expecteds restricted to applying textures onto a plane, otherwise the usual
everywhere. parameterization problems yielding distortions and discontinuities
Entirely avoiding both distortions and discontinuities can be would appear. Moreover, the problem of synthesizing the texture
achieved by using interactive texture painting software [8]. As in samples is only addressed for a specific texture, and the algorithm
the first method, a single texture map corresponding to a global pa-is not explicitly described.
rameterization of the surface is used. However the texture content
is directly designed on the object’s surface before being stored as a
map. The texture map may then appear distorted and discontinuous,1.2 Overview
but it will be correct when it is rendered. Depending on the user’s
skills, an homogeneous non-periodic texture may be designed usin
this method. However, this technique yields a high memory cost (as
in the first approach) and consumes lots of user’s time since texture
details must be drawn all over the surface. Moreover, the user work
is almost never re-usable on another shape.

gAs shown above, none of the existing tools provides an acceptable
solution to the problem of texturing arbitrary surfaces without dis-
tortions and discontinuities. With these constraints, previous meth-
ods demand too much designer intervention, are not compatible
with real-time display, occupy a large memory space, or a com-
bination of the above. This is a critical situation since most appli-
. . ) o cations of Computer Graphics rely on photo-realistic textiiig
Texture synthesis techniques:  An alternative to painting the  thjs paper, we introduce a full solution to this problem, designed in
texture onto the surface is to automatically generate it, which has the spirit of pattern-based texture mapping techniques. Our method
the advantage of saving user's time by replacing the redundant de-ayoids discontinuities for all surface topologies, minimizes texture
sign work by a high level control of the texture features. A wide (gistortions, and avoids the periodicity of the texture patterns.
range of parametric texture synthesis techniques that are convenient o solution is inspired from Escher’s work since the surface will
for generating natural textures have been proposed [16, 21, 19, 22].not pe tiled with square patches as usual, but rather with triangles
One such method is solid texturing, which involves defining a on which equilateral triangular texture samples will be mapped. It
3D material field (e.g. marble, wood) which is intersected with 3150 has connections with Pedersen’s geodesics [14], but they are
the object's surface to create the texture [16, 22]. No distortion ysed in our case in an automatic tiling framework, where the user
nor discontinuity across the object’s edges will be produced, since jst has to choose the size of the texture triangles with respect to
no surface mapping occurs. However the method is restricted t0the object’s geometry. Our solution to non-periodicity is similar
texture patterns that intrinsically come from a 3D phenomenon: it j, spirit to the one used by Stam [17], however we have solved
cannot capture surface properties such as the detailed appearance @fe more intricate problem of assigning sets of triangular texture
the skin (e.g. regular scales). Another drawback is that synthesizingsammes onto a curved surface that may be closed, while meeting
the texture during rendering will not allow real-time performance, poundary conditions everywhere. Lastly, our work generalizes Per-
since it is a per-pixel based computation. An alternative would be |in's and Worley’s texture synthesis techniques [16, 22] by allowing
to store 3D texture tables at a high memory cost. the automatic generation of adequate sets of triangular texture sam-
Other procedural techniques such as reaction diffusion [21, 19] ples. Solutions using real or hand-made images are also provided.
can be used to generate a pattern-based texture directly on an ob- Tne remainder of this paper is developed as follows: Section 2
ject's surface. These methods are computationally costly or have ajniroduces the main features of our approach. Section 3 deals with
high memory cost, depending whether the texture is generated onihe mapping of texture samples onto an arbitrary object geometry.
the fly or precomputed and stored. We can note that Perlin's and gection 4 describes different methods for the generation of texture

Worley's techniques may also be used on surfaces (as opposed tQqample sets, and shows a variety of results. We conclude in Sec-
solid material). However Perlin's noise requires a grid to be gener- tjon 5.

ated, so a global parameterization needs to be introduced.

Lastly, all the listed procedural techniques can easily be extended  3Moreover, tools have to cope with real-time constraints for video-games
to the automatic generation of square 2D texture samples that haveor flight simulators, and artist-time constraints for special effects in movies
a toroidal topology. The latter can then be used in pattern-basedproduction, for which designing textures is a huge part.




2 Texturing with Triangular Patches are approximately equilateral triangles. In order to generate a con-
tinuous texture over the entire surface, specific boundary conditions
This paper focuses on applying textures that are homogeneous at avill have to be met between texture samples mapped onto adjacent
large scale. Moreover, as for natural textures, they should be con-patches. Basically, the two patterns in the neighborhood of the bor-
tinuous, and no periodicity should be observed. The first feature is der separating two patches have to fit, which means that at least
obtained by using patterns that capture the short scale surface aspedioth texture values and derivatives are to be the same along a com-
variations, and by mapping them on the surface with low distortion mon edge. The methods presented in this paper solve for these local
(see subsection 2.1). The mapping deals with the boundary condi-continuity constraints under the hypothesis that the textured patches
tions at the junction between patterns, discussed in subsection 2.2are equilateral. If a texture sample happened to be mapped on a low
The final issue concerns the assignment method, explained in sub-quality patch (e.g. with sharp corners), the texture would be dis-
section 2.3. torted and discontinuities of the texture gradient would appear on

The solution described here is designed for isotropic texture pat- the patch edges. We have found that our solution is still sufficient
terns, which can be found in many natural objects (for instance in practice, since good quality meshes made of quasi-equilateral
in most human and vegetable tissues, in rust, dust, and in numer-triangles can be computed for almost any surface.
ous bumpy surfaces such as rock, ground, and roughcast wall). A Achieving texture continuity constraints using triangular tiles is
possible extension enabling the introduction and control of some more intricate than doing it with a square grid of tiles. As soon as a
anisotropy is discussed in future work. mesh node on a curved surface can be shared by an arbitrary (small)

number of neighboring patches (either triangular or square), there is

o . . no longer anything equivalent to the ‘toroidal topology’ that exists
2.1 Local parameterization with triangles when tiling the plane: no global orientation can be defined, so two
n patches may be connected by any edges. Moreover, this increases
a priori the constraints on the texture content near the sample cor-
ners. More precisely, this enforces a zero texture gradient at those
points, otherwise one would have to manage a continuity constraint
between the edges of a triangle. The methods we provide for the
generation of texture samples, described in Section 4, will have to
cope with these boundary constraints. As our results will show, the
gradient constraint at corners does not create any noticeable visual
artifacts.

Since our method only relies on local parameterizations and on
local continuity constraints between texture patches, it yields sin-
gularity free texturing whatever the topology of the object is (see
Figure 3). However, the scale of the texture details drawn on the
samples must not be too large. Otherwise, unexpected path shapes
will appear at the object surface, such as those depicted in Figure 3.
A practical solution to this signal processing problem consists of
using patterns that are large enough to contain more than a single
feature of the texture.

As we have seen in Section 1.1, the main source of problems i
usual mapping techniques is that they generally rely on global sur-
face parameterizations. In most cases, finding a correct global map
ping is simply impossible. However, Nature does not need to intro-
duce global parameterizations to ‘build’ its textures; local param-

eterizations, together with continuity constraints, are sufficient. A

tiling into continuous regions that can be locally parameterized can
always be found for the continuous surfaces we wish to texture.
Optimization methods will work better when applied to these local

regions than to the whole surface.

Rather that defining a tiling with square patches, triangles can
be used to tile a surface into regions where a local parameteriza-
tion will be defined. However, to the authors knowledge, no pre-
vious work has used triangular texture patterns to design surface
aspect in Computer Graphics. To address the different problem
of mesh re-tiling [20], Turk produces a regular triangular surface
tiling with controlled size. His algorithm fits precisely our require-
ments. We claim that if a polygonal tiling adequately captures an
object’s topology, it can be used for mapping textures. This is the .
case even if the tiling does not conveniently redefine the geome- g~
try, being either too coarse or too precise. Consequently, the first[>"
step of our algorithm consists of building@gangular tiling of the P
surface, computed at a user-defined scale. This tiling defines a sep{_}~
of local parameterizations of the surfaces, which will be used for -
texture mapping. More precisely, a given texture sample is going
to be mapped onto each triangular patch of the tiling, whose scale [~
thus controls the texture scale. In the remainder of the paper, wel,
call this tiling thetexture meshas opposed to thgeometric mesh
that is still used to define the shape during rendering.

2.2 Texture Samples and Boundary Conditions . .
Figure 3: Two cases where unexpected path shapes appear since the lowest

frequency of the texture (i.e. the grain size) is too close to the sample scale.
Left: A naive set of texture samples designed to figure cells onto a surface.
Right: A set of procedurally generated volumetric textures.

2.3 Assignment of Texture Samples

In order to create homogeneous textures that look like those of nat-
ural objects, several different texture samples have to be designed
and non-periodically mapped onto the surface. The problem is to
Figure 2: Each triangular patch of theexture mestis mapped onto an find how many samples are required in order to guarantee that the
equilateral region in a given texture sample. continuity constraints at boundaries will be respected, and to allow
sufficient variations of the texture. We must also find an algorithm
The idea is to map a triangular image onto each patch of the tex- for assigning texture samples to the patches of the texture mesh.
ture mesh (see Figure 2). As these images are equilateral triangles, The mathematical expression of this problem is not as simple as
there will be no visible distortion if the patches of the texture mesh in Stam’s case [17], where the mathematical theory provided a sim-




ple algorithm for achieving aperiodic mapping onto a plane, and edge values, the combination of possible triangles is far smaller
linked the number of texture samples to the number of required since edge choices have to be compatible.
boundary conditions (e.g. 16). We still have to solve a graph color-  In our examples, we use the minimum number of degrees of free-
ing problem (where the triangular patches represent the graph nodeslom, with correct results: A single kind of edge (thus two boundary
and where the set of three boundaries conditions to assign them corconditions) is used for Figures 10,12,14. We even used the special
respond to the different colors), but the graph is now a highly non- case of symmetry mentioned above to avoid doubling the boundary
regular structure, with a varying number of neighbors per node. condition per edge type in Figures 3(left) and 9. Noticeable repet-

A practical method for always providing a solution to continu- itivity may happen with some kinds of pattern when using a small
ity constraints is to use texture sample sets that include at least onenumber of edge conditions. Our solution consists of providing sev-
texture triangle for each possible choice of three edge-constraints.eral completely different texture samples that fit the same boundary
More variation, or more user-control on the large-scale aspect, canconditions. For instance, in Figure 3 left, five texture samples fit-
be obtained by fixing a material value at each node of the texture ting a single symmetric edge constraint are used. The generation of
mesh. Thus, at least one edge-constraint should be provided forseveral samples fitting the same boundary conditions can be easily
each possible choice of pair of node values. A simple three step done using the automatic texture synthesis techniques that will be
stochastic algorithm can then be used to consistently assign thepresented in Section 4. Figure 9 illustrates the use of 2 different
triangular samples onto the surface, in a statistically non-periodic edge conditions (using symmetry, in order to get only 2 boundary
way: conditions, thus 4 possible triangles). An example where node val-

ues are used is presented in Figure 5, with 2 possible values (forest
1. randomly choose which material value (among those used and ground), and symmetric boundary conditions (thus still only 4
at corners of texture triangles in the sample set) is associatedtriangles to define).
with each texture mesh node.

2. randomly choose which edge (among those used in the texture
sample set that are compatible with the values at nodes) is
associated with each geometrical edge of the texture mesh;

3. randomly assign a texture sample to each patch, among those
that obey the three required boundary conditions.

The question now is: how many different texture samples do we
need ? Since continuity conditions along an edge between two sam-
ples involve the gradient of the color map, the edges used in step 2
must be seen awiented edgesthey usually yield different bound-
ary conditions on their two sides (to be convinced, note that a tex-

_tured trlang_le does not smoothly We.ld with its mirrorimage, except Figure 5: Mountain covered by forest. The location of forest and ground

in the special case where the gradient of the image is locally per- naterial is controlled by the values at the nodes of the texture mesh. These

pendicular to the common edge everywhere along it). Suppose nowyalues are ‘painted’ by the user with their probability attribute (intensity of

that we have mapped a single oriented edgdl over the texture presence).

mesh. Let us denote Wy andE the different boundary conditions

that the texture samples should fit on both sides (ke Figure 4).

Then, at least four texture triangles respectively obeying the condi- )

tions €,E,E), (E,E,E), (E,E,E), or (E,E,E) must be provided. 3 Mapping

The_other possible values for the boundaries conditions (such as

(E,E,E) for instance) will be met by a rotated instance of one of In this section, we assume that we have a set of texture samples

these triangles. obeying adequate boundary conditions, and we describe our method
for mapping them on a surface at a user controlled scale.

As suggested above, our solution for providing such control is
E to map texture samples onto a specifically defitexdure mesh
that tiles the surface, instead of mapping them onto the triangles

that describe the object’'s geometry. This brings several advantages.

Figure 4: An oriented edge, and the set of four texture samples that need Fir_stly,’ the texture sca_le b_ecomes completely inde_penden_t from the
to be created to fit the different boundary conditions it produces. object’s geometry, which is a very useful property in practice. Sec-
ondly, we can compute a high quality mesh in terms of the angular
In the general case of different boundary conditions (i.e. two properties of the triangular patches. This will allow the mapping of

times the number of oriented edges), the number of texture trianglesSaullateral texture samples without generating too large texture dis-
; tortions, whatever the quality of the geometric mesh. Lastly, using

g texture mesh that would be too coarse to adequately describe the
Object geometry is not a problem; the initial geometric mesh will
still be rendered. The texture mesh just serves as a set of local pa-
rameterizations providing an image identifier and adequate texture
coordinates for the geometric mesh vertices.

times, the second one to conditions with two different edge values,
and the third one to solutions with three different edge values. For
instance, 24 texture triangles will be needed if 2 oriented-edges are
used instead of 1 (i.e. 4 boundary conditions insteall ahdE).

Since the number of triangles required increases as a power of 3,
our algorithm is not convenient for a larger number of edges. Note 3,1  QOverview of the texture mapping algorithm

that if several values at nodes are used in order to constrain possible ]
The user first chooses the set of texture samples he wants to use,

4This choice can be totally random to provide more variation, totally with the associated set of possible boundary conditions. He also
user defined, or defined with probabilities. indicates at which scale texture should be mapped by specifying




the desired density of texture control points (i.e., points that will estimate the ‘barycentric’ coordinates of this vertex within the tex-
be the vertices of the texture mesh) on the object’s surface. Then,ture patch. Then, conversion into texture coordinates is immediate
texture mapping is performed in the following four steps: by analogy with the planar case. The algorithm develops as follows.

1. We randomly generate texture control points of the desired  For each of the three edges of a texture patch:
density on the object’s surface, let them tune their relative po-
sition by simulating a repulsive force, and compute an associ- 1. Use a front propagation paradigm for computing the geodesic
ated high quality triangular mesh. The code we use for doing distances to the mesh vertices (see Figure 6):
this is courtesy of Greg Turk, who uses the same process in

his re-tiling algorithm [20]. The front is implemented using a heap that stores the trian-

gles whose three vertices are already provided with a distance
value. The heap is initialized by the triangles that lie along
the texture patch edge. Each front propagation step consists
« we use surface geodesics to compute curved versions of ~ Of taking the most reliable triangle within in the heap, i.e.,

the texture mesh edges; the triangle which is closébto this curve. The gradient of
the distance within this triangle is computed. Then, for each
neighboring triangle for which a vertex distance is still miss-
ing, we fold the distance gradient onto the plane of this trian-
e we compute the, v coordinates of each geometric ver- gle, and use the two already known values plus the gradient

tex with respect to the texture patch to which it belongs. for evaluating the missing distance. This neighboring triangle
is then inserted into the heap.

2. We tile the surface with this mesh, i.e.:

e we compute the set of geometric triangles covered by
each of the resulting texture patches;

3. We use the algorithm described in Section 2.3 to consistently
assign a specific texture sample to each patch of the texture
mesh.

4. We render the object’'s geometry using the lagal coordi-
nates of the mesh vertices to map the texture samples.

A possible solution for implementing step 2 would be to adapt the

set of methods introduced in [10]. In our current implementation,

we rather compute geodesic curves using a standard length mini-

mization process along a polygonal line, which is constrained to

move onto the geometric mesh (the line is made of segments whoseFigure 6: Front propagation process used for estimating the ‘barycentric’
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method, described below, for assigniogs local coordinates to dis?ancepwill b oL ito ore r$1arke i it P

mesh vertices that lie on a texture patch without producing exces-

sively large texture distortions. Alternative (and possibly better)

4 ; : ; In practice, there may be different ways of propagating dis-
isn()l[Ll’t(')Ozs lf(l)]r implementing this part of the process can be found tance to a given triangle, coming from several of its already

computed neighbors. So we add a quality criterion to the dis-
tance value stored in the heap, and we modify a value each
3.2 Computing texture coordinates for mesh time we are sure quality will improve. The best quality is ob-
points tained when an vertex to be estimated falls between the two
‘gradient lines’ passing through the two known vertices. The
The texture mesh may have been designed at either a smaller or  estimation is less sure when it falls outside this band. The es-

a larger resolution than the geometric mesh that describes the ob- timation is worst when the gradient is back-propagated, i.e.,

ject. In the latter case, the local part of the surface that falls into a when the computed distance is smaller than the two known

patch of the texture mesh (i.e., between three connected geodesics) ones (then the result should only be used when no better eval-
may be highly curved. Computing v coordinates for mesh points uation is available).

included in this region must be done while trying to avoid texture
distortions. Attention must also be paid to computing coordinates 2. Normalize all the distance values by dividing them by the
that exactly map the edges of the texture sample onto the geodesic value at the patch vertex that is opposite that edge.
edges of the patch, in order to avoid introducing discontinuities in )
the large scale texture at the junction between patches. Our solutionEach vertex of the geometric mesh now stores three numbers
is as follows: a,b,c € [0,1]. To convert them into barycentric coordinates with
To get rid of the border problem, we split the geometric triangles Tespect to the three vertices of the texture patch, we divide_them by
that are crossed by a geodesic, in order to be able to specify thetheir sum, so thaa+b-+c = 1. Lastly, we convert barycentric co-
exact texture coordinates along the texture patch &dges ordinates into texture cooydlnates with respect to the texture patch
The problem of computing a goadv mapping inside each of  (the three comers of the image should mapao), (3, %), (1,0)).
the texture patches still remains. Since the problem is local, we The resulting mapping yields good results with only small texture
have developed a simple solution that does not requires an opti-distortions, as shown in Figure 7. However we have to keep in
mization step. The basic idea is to use the three geodesic distance§ind that avoiding excessive distortions is only possible ‘locally’:
between a mesh vertex and the three edges of the texture patch t@ne surfallqce_’s radius of curvature should not be too small relative to
the patch size.
5The alternative solution that consists of keeping the triangles unsplit, ~ Figure 8 illustrates the control provided by texture mapping us-
computing a different texturing process (with half-transparent textures) for ing a texture mesh: the scale of the texture can be increased while
each texture patch that the triangle intersects does not work well: it does notleaving the geometry of an object unchanged.
provide enough control on the v coordinates near the edges of a texture
patch, yielding texture discontinuities at this location. 6considering the maximum of the three distance values at vertices.
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Figure 10: A set of texture samples designed by interactively editing an

Figure 7: A texture patch mapped onto a curved region of a geometric jmage of a sponge (left), and the resulting textured surface on a terrain and
model (views from three different viewpoints): texture distortions remain 5 3 face.

reasonable.

We now describe two procedural synthesis techniques that can
be used for automatically generating parameterized sets of texture
samples thus saving user’s time.

4.2 Extending Worley’s algorithm

Figure 8: From left to right: the geometric mesh, which is rendered; the Worley’s method [22] is an efficient approach for creating textures
texture mesh, used for tuning the scale of the texture with respect to the gepicting small non-periodic cellular patterns such as rocks, scales,
?etﬂteuﬁtes. geometry; the resulting textured sphere; the sphere with a finer scaleOr living tissues. When applied in 2D, Worley’s method basically
consists of computing Voromaliagrams of noise points randomly
distributed on a plane. A square grid is used to accelerate the com-
4 Texture Samples Generation putation: a noise point is randomly chosen in each cell. Then, de-
termining in which of the Voronoregion each pixel falls can be
done efficiently, by only checking the noise points in the 9 closest
cells. The portion of the plane covered by the noise points must
A first method for generating adequate sets of texture samples isbe slightly larger than the square region to texture, in order to have
direct editing, under a 2D paint system, of pictures or drawings. Nice Vorona'regions cross the edges. Worley's method combines
An example of hand-drawn texturing of a surface is depicted in the distances from a pixel point to tié nearest noise points to
Figure 9. compute the texture value at the pixel (generadily:[1..4]). We
only describe here how to deal with the nearest noise point; the
other distance computations are adapted the same way.

Adapting Worley’s technique for generating the texture on an
equilateral triangle is easy: we just have to tile this triangle with
a slightly larger triangular grid as depicted in Figure 11. A noise
point is randomly chosen in each of the small triangles, and Vorono™
diagrams are computed as in the standard case.

4.1 Editing pictures or drawings

A

random noise value

Figure 9: Texture samples drawn by hand, and the resulting image. Two
different edge conditions (red, blue), both symmetric, are used.

Althou_gh It tak_es a certain amount of user-time, it is possible to Figure 11:Triangular grid used for extending Worley's algorithm: Noise
edit real images in order to give them the required boundary condi- ajues that represent a given boundary condition along an edge are sur-
tions. The technique, that consists of copying and smartly pasting rounded by a dashed line. Values which are the rotated copies of each other
rectangular regions along edges and then eliminating texture dis-in order to maintain continuity constraints at a texture sample corner are
continuities inside the sample, is almost the same as for square im-indicated in pink.
ages. A single self-cyclical texture triangle, corresponding to a sin-
gle symmetric edge, can be used. A more complex example of pic-  For our pattern-based texturing application, we need to gener-
ture editing, where four different texture samples have been createdate Worley triangles that obey specified boundary conditions along
for fitting the constraints associated with a single non-symmetric edges. More precisely, we want to be able to control the texture
oriented edge, is depicted on Figure 10. The reference rectangu-in the neighborhood of each triangle edge in order to ensure con-
lar region figuring the oriented edge has been rotated by ©80 tinuity between samples. Our solution is similar to the approach
not when copied on the image borders, depending on which of the suggested in [17], and also to what we have described above for
boundary conditionsH, E,E), (E,E,E), (E,E,E), or (E,E,E) each real image editing: we first generate the ‘rectangular regions’ repre-
of the four samples corresponds to. senting each oriented edge. This rectangular region is implemented



here by a two row grid storing the noise points that can influence the
border neighborhood, on both parts of the boundary. Once again,
we derive the complementary condition by rotating the rectangle
that defines a boundary condition by 280’hen, we duplicate the

noise values into the adequate part of the grid, for each texture tri- _.
q p gne. Figure 13:Triangular grids used for generating the noise function at dif-

angle that must obey this _specmc <_:ond|t|on. F"?a”y’ the noise val- ferent scales. The noise values that need to be fixed for ensuring boundary
ues of the inner unconstrained region of each triangle are chosen atgnditions are shown in bold.

random.

Particular attention must be paid to the achievement of texture
continuity near texture sample corners. Two edges meet there, and e as for textures based on Perlin's technique, we ran-
the noise values they give to the texture triangle should thus be the domly associate a plane to each grid node, defined by
same. As explained in Section 2.2, the solution is to define a texture its elevation above the node and by its normal vector;

with a given value and a zero gradient at these vertices. In terms of
the algorithm above, this can be done by copying a rotated version
of a given noise value into all the grid cells that surround a given
vertex. In a naive implementation, this operation has to be done
within two ranks of cells surrounding the corner (figured in pink),
since the noise values in the second rank of cells may influence the
texture gradient there. A trick for eliminating some possible visual
artifacts due to symmetry is to restrict the range of possible noise
point values in cells A and B (see Figure 11) so that the Vorono™
region generated by the point in the blue cell between them will
not intersect the edge of the texture sample. Then, this noise point

value will have no influence on the texture at the vertex, enabling 3. The value obtained is used as usual as a seed or a perturbation

o we define the noise at any point inside the triangle as the
barycentric interpolation of the distances to the three
planes that are associated to the vertices of the small
triangular cell where the point lies.

2. We define the final noise value at a pixel as the sum of in-
stances of the pseudo-periodic noise function defined above,
applied at different scales thanks to recursive subdivision of
the triangular mesh, with a scaling factor that is the equal to
the scale. This gives the fractal aspect to the noise.

a (constrained) random choice for this cell. In Figure 11, all the to define the texture value at the pixel.
noise points in the blue triangles can be chosen at random without
spoiling boundary conditions. Modifying this algorithm to ensure a set of given boundary condi-

Two examples of texture sample sets, and the resulting imagestions around each triangle is easy: we just have to model a boundary
they produce when mapped on a surface, are depicted in Figure 12condition as the set of noise values that control the texture values
and derivatives along an edge. These values are those indicated in
bold in Figure 13. We then duplicate these boundary values onto
the adequate side of the grid, for all the texture samples that have
A A A A to obey this specific boundary condition. Ensuring continuity at the
three corners of texture sample is done as usual by giving the same
mean value and zero gradient to the texture there, i.e., using spe-
cific noise values at each vertex. As in original Perlin’s algorithm,
all random values are precomputed in a (small) hash table, and no
copy is done: instead we compute at any location which index in
the random table should be accessed. To define the same control
value at the vertices of two edges, one just has to ensure that the
same index is produced, and rotate the built random normal vector
on the fly (because adjacent triangles do not use the same frame).
Three examples of texture sample sets and the resulting images
they produce are depicted in Figure 14. Note that computing pro-
cedural textures on triangular domains while ensuring continuity

Figure 12: Sets of texture samples generated by our extension of Worley's constraints can also be used on the fly for other kinds of applica-

synthesis technique, and the images produced by non-periodically mappingt'ons' For |_nstance, we _have_' used an algorithm close from abpve
them onto a surfacd.eft: A human liver.Right: A china torus. for generating at rendering time a displacement texture modeling

the crust of an evolving lava-flow without having to parameterize
the flow surface [18].

4.3 Extending Perlin’s synthesis technique 5 Conclusions & Future Work

Fractal noise based on Perlin’s basis function [16] is a self-similar
stochastic noise that has become a standard for generating object¥Ve have presented a general framework, based on triangular tex-
that look like wood, marble, or the surface aspect of rock. One of ture tiles, for texturing an arbitrary surface at low rendering time
its main features is to ensure continuity of both noise values and and memory cost. Our method has been designed for covering the
gradient at any point of an image (or of a volume, when the method surface with an homogeneous non-periodic texture such as those
is used in 3D, e.g. to figure smoke). that can be found on many natural objects. The main features of
To adapt it to our texturing methodology, we first have to be able our approach are the following: the texture can be applied at any
to generate the basis function on 2D equilateral triangles. Since Per-scale with respect to the object geometry, and whatever the quality
lin’s standard model is defined on a quadrangular grid, we modify of the geometric mesh; no singularity is generated whatever the sur-
the algorithm in the following way: face topology, and distortions are minimized. Moreover, using the
method demands little user work, by avoiding redundancies. We
1. We first generate a pseudo-periodic noise function on a regu- describe how to use hand-drawing and real images, and we pro-
lar grid that tiles the equilateral triangle into sub-triangles (see vide two automatic texture synthesis methods that adapt Perlin’s
Figure 13). This requires two steps: and Worley's algorithms to a triangular domain. Adapting other



Figure 14:Three sets of texture samples generated by our extension of Perlin’s synthesis technique, and the images produced by mapping them onto a surface.
In the image on the right, Perlin’s texture is used as displacement map, encoded with an OpenGL implementation of volumetric textures [13].
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