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Figure 1:Several volumes rendered on the VolumePro hardware at 30 frames per second.

Abstract

This paper describes VolumePro, the world’s first single-chip real-
time volume rendering system for consumer PCs. VolumePro im-
plements ray-casting with parallel slice-by-slice processing. Our
discussion of the architecture focuses mainly on the rendering
pipeline and the memory organization. VolumePro has hardware
for gradient estimation, classification, and per-sample Phong illu-
mination. The system does not perform any pre-processing and
makes parameter adjustments and changes to the volume data im-
mediately visible. We describe several advanced features of Vol-
umePro, such as gradient magnitude modulation of opacity and il-
lumination, supersampling, cropping and cut planes. The system
renders 500 million interpolated, Phong illuminated, composited
samples per second. This is sufficient to render volumes with up to
16 million voxels (e.g.,2563) at 30 frames per second.
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1 Introduction

Over the last decade, direct volume rendering has become an in-
valuable visualization technique for a wide variety of applications.
Examples include visualization of 3D sampled medical data (CT,
MRI), seismic data from oil and gas exploration, or computed finite
element models. While volume rendering is very popular, the lack
of interactive frame rates has limited its widespread use. To render
one frame typically takes several seconds due to the tremendous
storage and processing requirements. The three most promising
approaches to achieve real-time frame rates for volume rendering
are highly optimized software methods, use of 3D texture mapping
hardware, or special-purpose volume rendering hardware.

Optimized software techniques for volume rendering require
pre-computation and additional data storage, and they often sac-
rifice image quality for speed. Shear-warp rendering [11] is cur-
rently the fastest software algorithm. It achieves 1.1 Hz on a single
150MHz R4400 processor for a256 � 256 � 225 volume with 65
seconds of pre-processing time [10]. Unfortunately, pre-processing
prohibits immediate visual feedback during parameter changes. It
also prevents real-time visualization of dynamically changing vol-
ume data.

3D texture mapping hardware can be used for volume render-
ing using a method called planar texture resampling [4]. A volume
is stored as a 3D texture and resampled during rendering by ex-
tracting textured planes parallel to the image plane. Interactive ren-
dering rates have been achieved on the SGI Reality Engine [1, 2].
However, texture hardware does not support estimation of gradients
that are required to identify surfaces for shading. Efforts to over-
come these difficulties either require multi-pass rendering, are lim-
ited to iso-surfaces and do not extend to specular illumination [18],
or require significant pre-processing [6]. Other restrictions, espe-
cially on PC graphics cards, include limited arithmetic precision
for blending and interpolation and limited texture memory.

Special purpose hardware for volume rendering has been pro-
posed by various researchers, but only a few machines have been
implemented. VIRIM was built at the University of Mannheim,
Germany [7]. The hardware consists of four VME boards and im-
plements ray-casting. VIRIM achieves 2.5 frames/sec for2563 vol-
umes. The VIZARD system of the University of T¨ubingen, Ger-
many, implements perspective ray-casting and consists of two PCI
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accelerator cards [9]. An FPGA-based system achieves up to 10
frames/sec for2563 volumes. The system, however, uses lossy data
compression, and any changes in classification or shading parame-
ters require lengthy pre-processing.

To overcome these limitations, we have developed VolumePro.
VolumePro is the first single-chip real-time volume rendering sys-
tem for consumer PCs. It does not require any pre-processing and
performs a brute-force resampling of all voxels for each frame. This
makes changes to the volume data immediately visible and allows
the integration of VolumePro hardware into simulation systems
(e.g., surgical simulation) or real-time acquisition devices (e.g., 3D
ultrasound). VolumePro has hardware for gradient estimation, per-
sample Phong illumination, and classification, and all parameters
can be adjusted in real-time.

A VolumePro system consists of the VolumePro PCI card, a com-
panion 3D graphics card, and software. The VolumePro PCI card
contains 128 MB of volume memory and the vg500 rendering chip.
The Volume Library Interface (VLI) is a collection of C++ objects
and provides the application programming interface to the Volume-
Pro features. The first VolumePro board was operational in April
1999 (see Figure 2). Production shipments started in June 1999 at
an initial price comparable to high-end PC graphics cards.

Figure 2:The VolumePro PCI card.

VolumePro is based on the Cube-4 volume rendering architec-
ture developed at SUNY Stony Brook [14]. Cube-4 requires, how-
ever, a large number of rendering and memory chips, many pins
for inter-chip communication, and large on-chip storage for inter-
mediate results. Consequently, we developed Enhanced Memory
Cube-4 (EM-Cube) [13] to implement Cube-4 at lower cost.

VolumePro is the commercial implementation of EM-Cube, and
it makes several important enhancements to its architecture and
design. By giving up scalability we are able to fit four render-
ing pipelines on one chip (see Section 5). An on-chip voxel dis-
tribution network greatly simplifies communication between ren-
dering pipelines (see Section 5.3). A novel block-and-bank skew-
ing scheme takes advantage of the internal organization of modern
SDRAM devices (see Section 5.2). VolumePro also implements
several novel features, such as gradient magnitude modulation, su-
persampling, supervolumes, slicing, and cropping (see Section 4).

The reality of a tight production schedule, however, forced us to
make compromises. VolumePro supports only 8- and 12-bit scalar
voxels and no other voxel formats. It performs orthographic pro-
jections of rectilinear volume data sets. Perspective projections and
intermixing of polygons and volumes were deemed too complex
and were postponed for a future release of the system. This paper
is the first detailed description of the VolumePro architecture and
system. All images in this paper were rendered on a pre-production
version of the VolumePro hardware at 30 frames/sec.

2 Rendering Algorithm

VolumePro implements ray-casting [12], one of the most commonly
used volume rendering algorithms. Ray-casting offers high image
quality and is easy to parallelize. The current version of VolumePro
supports parallel projections of isotropic and anisotropic rectilinear
volumes with scalar voxels.

To achieve uniform data access we use a ray-casting technique
with hybrid object/image-order data traversal based on the shear-
warp factorization of the viewing matrix [19, 15, 11] (see Figure 3).
The volume data is defined in object coordinates(u; v; w), which
are first transformed to isotropic object coordinates by the scale and
shear matrixL. This allows to automatically handle anisotropic
data sets, in which the spacing between voxels differs in the three
dimensions, and gantry tilted data sets, in which the slices are
sheared, by adjusting the warp matrix. We discuss gradient esti-
mation in anisotropic and sheared volumes in Section 3.2.
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Figure 3:Shear-warp factorization of the viewing matrix.

The permutation matrixP transforms the isotropic object to per-
muted coordinates(x; y; z). The origin of permuted coordinates is
the vertex of the volume nearest to the image plane and the z axis
is the edge of the volume most parallel to the view direction.

The shear matrixS represents the rendering operation that
projects points in the permuted volume space onto points on the
base plane. In VolumePro this projection is performed using ray-
casting. Instead of casting rays from image space(xi; yi; zi), rays
are sent into the data set from the base plane(xb; yb; zb), which
is the face of the volume data that is most parallel to the viewing
plane. This approach guarantees that there is a one-to-one mapping
of sample points to voxels [19, 15].

In contrast to the shear-warp implementation by Lacroute and
Levoy [11], VolumePro performs tri-linear interpolation and allows
rays to start at sub-pixel locations. This prevents view-dependent
artifacts when switching base planes and accommodates supersam-
pling of the volume data (see Section 4.1).

The base plane image is transformed to the image plane using the
warp matrixW =M�L�1�P�1�S�1. VolumePro uses 2D tex-
ture mapping with bi-linear interpolation on a companion graphics
card for this image warp (see Section 6). The additional 2D im-
age resampling results in a slight degradation of image quality. It
enables, however, an easy mapping to an arbitrary user-specified
image size.



The main advantage of the shear-warp factorization is that vox-
els can be read and processed in planes of voxels, called slices, that
are parallel to the base plane. Slices are processed in positive z di-
rection. Within a slice, scanline of voxels (called voxel beams) are
read from memory in top to bottom order. This leads to regular,
object-order data access. In addition, it allows parallelism by hav-
ing multiple rendering pipelines work on several voxels in a beam
at the same time. This concept is explained further in Section 5.
The next section describes a single VolumePro rendering pipeline.

3 The Ray-Casting Pipeline

A key characteristic of VolumePro is that each voxel is read from
memory exactly once per frame. Therefore, voxel values must
be recirculated through the processing stages of the VolumePro
pipeline so that they become available for calculations precisely
when needed.

A second characteristic of VolumePro is that the reading and pro-
cessing of voxel data and calculation of pixel values on rays are
highly pipelined. One VolumePro processing pipeline can accept
a new voxel every cycle and can forward intermediate results to
subsequent pipeline stages every cycle. The net effect is that Vol-
umePro can render a volume data set at the speed of reading voxels.

Figure 4 illustrates a flow diagram of an idealized version of the
VolumePro processing pipeline. In this figure, the flow and pro-

Voxel addressesin
slice-by-sliceorder

Voxel
Memory

Voxel values in
slice-by-slice order

V
ox

e
l

F
IF

O

Voxel Shift Register

Sample values in
slice-by-slice order

Gradient at sample points
in slice-by-slice order

Pixel values

Gradient
Estimation

Classification
& Illumination

Color and opacity
assignments to sample points

Inter -
polation

Sample values in
delayed slice-by-slice order

Delay

Weight
Generator

wx, wy, and wz, values

in slice-by-slice order

Address
Generator

Com-
positing

Partially

of rays

accumulated
rays

S
lic

e
R

a
y

F
IF

O
B

ea
m

V
o

xe
l

F
IF

O
B

e
a

m

S
am

p
le

F
IF

O
S

lic
e

S
a

m
pl

e

F
IF

O
B

e
a

m

D

Sample Shift Register

Ray Shift

Color and opacity Reflectance

Ray
Alignment

Ray

R
a

y

F
IF

O
S

lic
e

M
U

X

M
U

X

selectors

Register

lookup tables Maps

Figure 4:Conceptual ray-casting pipeline.

cessing of voxel data is shown in black, and control information is
shown in red. The figure shows interpolation followed by gradient
estimation. In actual practice, the x and y gradients are computed
following interpolation, but the z gradients are estimated before in-
terpolation (see Section 3.2).

3.1 Interpolating Voxel Values

At the top of Figure 4 is Volume Memory, also called Voxel Mem-
ory. The current generation of VolumePro supports 8- and 12-bit
scalar voxels. All internal voxel datapaths are 12-bits wide. Voxels
are read from the memory and are presented to the Interpolation unit
in the slice-by-slice, beam-by-beam order described in Section 2,
one voxel per cycle. The Interpolation unit converts the stream of
voxel values into a stream of sample values, also in slice-by-slice,
beam-by-beam order, at the rate of one sample value per cycle. The
interpolated samples are rounded to 12-bit values.

Each sample value is derived from its eight nearest neighboring
voxels by tri-linear interpolation. Therefore, the Interpolation Unit
must have on hand not only the current voxel from the input stream,
but also all other voxels from the same tri-linear neighborhood. It
does this by storing input voxels and other intermediate values in
the Voxel Slice FIFO, Voxel Beam FIFO, and Voxel Shift Register.
Each of these is a data storage element sized so that when a newly
calculated value is inserted, it emerges again at precisely the time
needed for a subsequent calculation.

Trilinear interpolation also requires a set of weights. These are
generated by the Weight Generator in Figure 4. This generator is
based on a digital differential analyzer (DDA) algorithm to calcu-
late each new set of weights from the previous weights. Since all
rays are parallel to each other and have exactly the same spacing
as the pixel positions on the base plane (and hence, as the voxels of
each slice), a single set of weights is sufficient for all of the samples
of a slice.

3.2 Gradient Estimation

The output of the Interpolation unit is a stream of sample values,
one per cycle in slice-by-slice, beam-by-beam order. This stream
is presented to the Gradient Estimation unit for estimating the x, y
and z gradients on each sample using central differences.

VolumePro computes gradients in two equivalent ways. In z di-
rection, we interpolate differences between voxels to sample posi-
tions, and in x and y direction we take differences of interpolated
samples. Both orders of computation yield equivalent results be-
cause difference and tri-linear interpolation are commutative linear
operators.

The gradient at a particular sample point depends not only on
data in the current slice but also on data in the previous and next
slice. The next slice, of course, has not been read when the cur-
rent sample value arrives at the input. Therefore, the Gradient Es-
timation unit operates one voxel, one beam, and one slice behind
the Interpolation unit. That is, when sampleS(x+1);(y+1);(z+1) ar-
rives, the Gradient Estimation Unit finally has enough information
to complete the estimation of the gradient at sample pointSx;y;z.

It does this by maintaining two full slices of buffering, plus two
full beams of buffering, plus two extra samples. These are stored
in the Sample Slice FIFOs, Sample Beam FIFOs, and Sample Shift
Registers, respectively, which serve roughly the same functions as
the Voxel Slice FIFO, Voxel Beam FIFO, and Voxel Shift Register.
Each central difference gradient has signed 8-bit precision, meaning
it can represent numbers in the range[�127 � � �+ 127].

VolumePro handles anisotropic and sheared volumes by treating
them as isotropic and subsequently adjusting the warp matrix (see
Section 2). The different voxel spacing and alignment leads to in-
correct gradients, however, because the vector components are not



(a) None (b) Illumination (c) Opacity (d) Opacity and illumination

Figure 5:Images rendered with gradient magnitude modulation of opacity or illumination. Notice how the appearance of surfaces changes.

orthonormal in object space. We correct for these differences in
software by adjusting the light positions every frame to compute
the accurate dot product between gradient and light vectors for am-
bient and diffuse illumination. To correct the specular highlights we
adjust the eye vector, used in the reflection vector hardware, every
frame (see Section 3.5).

3.3 Gradient Magnitude

The gradient magnitude can be used to render multiple semi-
transparent surfaces in volumes [12]. In VolumePro the sample
opacity and illumination are optionally multiplied with the gradi-
ent magnitude. This modulation can be used to emphasize surface
boundaries, to reduce the illumination of samples with small gradi-
ents, or to minimize the visual impact of noisy data.

Figure 5 shows four renderings of a CT scan of an engine block
(256 x 256 x 110). Figures 5(a) and (b) show the difference be-
tween no modulation and gradient magnitude modulation of spec-
ular illumination. Regions of small gradient magnitude, such as
noise, are de-emphasized in Figure 5(b). Figure 5(c) shows gradi-
ent magnitude modulation of opacity. Homogeneous regions with
small gradient magnitude, such as the walls, are more transparent
compared to Figure 5(a). Figure 5(d) shows the combined effect
of modulating opacity and illumination by the gradient magnitude.
Homogeneous regions are more transparent and the overall illumi-
nation is attenuated.

VolumePro derives a sample’s gradient magnitude in two phases.
First, the square of the gradient magnitude is computed by taking
the sum of the squares of the gradient components. Then a Newton-
Raphson iteration is used to compute the square-root of this value,
resulting in an approximation of the gradient magnitude. The gra-
dient components are in the range of[�127 � � �+127], making the
maximum gradient magnitude value

p
3 � 1272. It is stored as an

unsigned 8-bit number in the range of[0 � � � 220].
The gradient magnitude is then mapped to the range[0 � � � 255]

by a lookup table (GmLUT). The table stores a user-specified piece-
wise linear function that can be used to highlight particular gradi-
ent magnitude values or to attenuate the modulation effect. The
table is also used to automatically correct the gradient magnitudes
in anisotropic volumes.

3.4 Assigning Color and Opacity

VolumePro assigns RGBA values to interpolated samples as op-
posed to classifying voxel values first and then interpolating RGBA.
This produces the greatest accuracy for nonlinear mappings from
data to color and opacity. It also reduces the number of interpola-
tors by a factor of four. Unfortunately, it prevents direct rendering

of volumes that have been pre-classified by a software segmentation
algorithm into RGBA or material volumes [5].

The classification of sample values to RGBA in VolumePro can
summarized as:

� =

�
GmLUT(jGradientj) � �LUT(Sample) if Go = 1
�LUT(Sample) if Go = 0

SampleRGB = colorLUT(Sample):

The actual classification of samples is a straightforward table
lookup of the 12-bit sample value into a4096 � 36 bit classifi-
cation lookup table (LUT). The lookup table stores 36-bit RGBA
values. Color values are stored with 8-bit precision for each of R,
G, and B.� is stored with 12-bits precision for maximum accuracy
during ray-casting of low opacity volumes.

The RGBA table is pre-computed and loaded into VolumePro
prior to rendering. Color and opacity can be loaded separately. An
additional on-chip RGBA table hides the latency of loading the ta-
bles through double buffering. Loading a new opacity table with
4k � 12 bit entries requires 2k 32-bit PCI transfers, or 246 KB/sec
for 30 loads/sec. Updating the table every frame corrects the opac-
ities for non-unit sample spacing during view changes, anisotropic
volumes, or supersampling [5]. As mentioned in Section 3.3, the
value of�may be optionally multiplied by the gradient magnitude,
depending on the value ofGo.

3.5 Sample Illumination

VolumePro implements Phong illumination at each sample point at
the rate of one illuminated sample per clock cycle. The shading
calculation can be summarized as:

RGB = ((ke + (Id �Gd � kd)) � SampleRGB) +

(Is �Gs � ks � SpecularColor);
where:

Id = Di�useReectanceMap(Gradient);

Is = SpecularReectanceMap(ReectionVector);

G[d;s] =

�
GmLUT(jGradientj) if Gmim[d;s] = 1

1 if Gmim[d;s] = 0

and whereke; kd; ks, and specularColor are registers of Volume-
Pro. The values ofGmimd andGmims enable or disable Gradient
Magnitude Illumination Modulation for diffuse or specular illumi-
nation, respectively.

The sample color from the classification LUT is multiplied byke
to produce the emissive color of the object. The diffuse contribution
is obtained by multiplying a user-defined diffuse coefficientkd with



the diffuse illumination valueId and the sample color. The specu-
lar contribution is obtained by multiplying a user-defined specular
color with the product of a specular coefficientks and the specular
illumination valueIs.

The diffuse and specular illumination valuesId andIs are looked
up in reflectance maps, respectively. Each reflectance map is a pre-
computed table that stores the amount of illumination due to the
sum of all of the light sources of the scene. The reflection map
implementation supports an unlimited number of directional light
sources, but no positional lights. Trading computation for table
lookup leads to simpler logic than an arithmetic implementation
of shading. The VLI software loads the diffuse and specular re-
flectance maps into VolumePro prior to rendering a frame.

Reflectance values are mapped onto six sides of a cube, indexed
by the unnormalized gradient or reflection vectors [17]. The re-
flection vector for each sample is computed in hardware from the
gradient and eye vectors. Using bi-linear interpolation among re-
flectance map values keeps the table size small without incurring
noticeable visual artifacts [16]. The specular and diffuse map are
implemented with 384 32-bit entries each. To load both tables takes
92 KB/sec for 30 loads/sec.

The reflectance maps need to be reloaded when the object and
light positions change with respect to each other, or to correct the
eye vector in anisotropic volumes (see Section 3.2). Because the
reflection vector is computed in hardware, however, the reflectance
maps do not have to be reloaded when the eye changes in isotropic
volumes.

3.6 Accumulating Color Values along Rays

The output of the Classification and Shading unit is a stream of
color and opacity values at sample points in slice-by-slice, beam-
by-beam order. This stream is fed into the Compositing unit for
accumulation into the pixel values of the rays. Samples along rays
arrive in front-to-back order. The compositing unit that works on
a particular ray also gets samples from other rays, due to the slice-
order traversal. Thus, the samples must be buffered until the color
and opacity values of the next sample point along the ray arrive in
the stream.

The Ray Slice FIFO, Ray Beam FIFO, and Ray Shift Reg-
ister hold the values of the partially accumulated rays for this
purpose. Although these look somewhat like the Voxel Slice
FIFO, Voxel Beam FIFO, and Voxel Shift Register, their func-
tions are different because of the cyclical nature of compositing.
To understand this, observe that the compositing operation for
sampleSx;y;z requires as input the result of compositing one of
Sx;y;(z�1); S(x�1);y;(z�1); Sx;(y�1);(z�1), or S(x�1);(y�1);(z�1),
depending on the view direction and the value of z. That is, the
predecessor value required as input to a particular compositing op-
eration is the result of one of four compositing operations of the
previous slice of samples. The selection of which particular one
falls under the control of the Ray Alignment unit near the bottom
of Figure 4, which drives two multiplexers (labeledMUX in the fig-
ure).

The Ray Slice FIFO stores partially accumulated pixel values
of rays and makes them available for compositing with color and
opacity values from the next slice. The Ray Beam FIFO stores
the same values for a further beam time, so that in case the rays
angle downward, input values can be obtained from the beam above
and before the current sample. Likewise, the Ray Shift Register
stores the same value for one additional cycle, in case the input
value needs to be obtained from a sample to the left of the current
one.

In addition to alpha blending, VolumePro supports Minimum and
Maximum Intensity Projections (MIP) (see Table 1). In the table,
Cacc and�acc are the accumulated color and opacity, respectively.

VolumePro uses 12 bits of precision for�;Cacc; �acc, and all inter-
mediate compositing values for correct�-blending in low-opacity
volumes and very large data sets.

Blend Mode Functions
Front-to-back Cacc+ = (1� �acc)� (�sampleCsample)
�-blending �acc+ = (1� �acc)� �sample

Minimum if (sampleValue< minValue):
Intensity Cacc = Csample; minValue = sampleValue;

Maximum if (sampleValue> maxValue):
Intensity Cacc = Csample; maxValue = sampleValue;

Table 1:Blending modes of VolumePro.

Finally, after the color and opacity values of all of the sample
points on an individual ray have been accumulated, the resulting
pixel value of that ray is output. This may occur when a ray passes
through the back of the volume – i.e., with a maximum value of z
– or when it passes through a side face of the volume. Base plane
pixel values are written to Pixel Memory and then transferred to a
companion 3D graphics card for the final image warp. The image
warp is performed by 2D texture mapping hardware on the compan-
ion 3D graphics card. The base plane image is defined as a texture
of a polygon corresponding to the base plane bounding box. The
3D graphics card transforms and bi-linearly resamples this textured
polygon to the final image position.

Figure 6(a) shows a foot (152 x 261 x 200) of the visible man CT
data set rendered with Maximum Intensity Projection (MIP). Fig-
ure 6(b) shows the CT scan of a lung (256 x 256 x 115) with low-
opacity alpha blending and no illumination. Figure 6(c) shows the
same dataset, but with illumination and gradient magnitude modu-
lation of opacity.

(a) (b) (c)

Figure 6: (a) MIP. (b) Alpha blending, no illumination. (c) Alpha
blending, illumination, gradient magnitude modulation of opacity.

4 Advanced Features of VolumePro

This section describes several additional features that have some
impact on the architecture of VolumePro. These include supersam-
pling, supervolumes (volumes larger than 256 voxels in any dimen-
sion), subvolumes, cropping and cut planes. We are not aware of
any previous implementation of these features in special-purpose
volume rendering hardware.

4.1 Supersampling

Supersampling [8] improves the quality of the rendered image by
sampling the volume data set at a higher frequency than the voxel



spacing. In the case of supersampling in the x and y directions, this
would result in more samples per beam and more beams per slice,
respectively. In the z direction, it results in more sample slices per
volume.

VolumePro supports supersampling in hardware only in the z di-
rection. Additional slices of samples are interpolated between exist-
ing slices of voxels. The software automatically corrects the opacity
according to the viewing angle and sample spacing by reloading the
opacity table (see Section 3.4).

Figure 7 shows the CT scan of a foot (152 x 261 x 200) rendered
with no supersampling (left) and supersampling in z by 3 (right).
The artifacts in the left image stem from the insufficient sampling
rate to capture the high frequencies of the foot surface. Notice the
reduced artifacts in the supersampled image. VolumePro supports
up to eight times supersampling.

Figure 7:No supersampling (left) and supersampling in z (right).

The impact of supersampling on the VolumePro processing
pipelines is minimal. Since it is necessary to have voxels from two
slices to interpolate in the z direction, it is sufficient to do several
of these interpolations from the same pair of slices before moving
on to another slice. Since samples pass from the Interpolation unit
in slice-by-slice order, the only impact is that the voxel memory
stages of the pipeline must stall and wait for the additional, super-
sampled slices to clear. Thus, if we supersample by a factor of k,
the rendering rate in frames per second is reduced by1

k
.

With the current implementation of VolumePro, supersampling
in the x and y directions can be implemented by repeatedly render-
ing a volume with slightly different ray offsets on the base plane in
the x and y dimensions. The VolumePro hardware supports initial
ray offsets at sub-pixel accuracy. The VolumePro software provides
the necessary support to automatically render several frames and to
blend them into a final supersampled image.

4.2 Supervolumes and Subvolumes

Volumes of arbitrary dimensions can be stored in voxel memory
without padding. Because of limited on-chip buffers, however, the
VolumePro hardware can only render volumes with a maximum of
256 voxels in each dimension in one pass. In order to render a larger
volume (called a supervolume), software must first partition the vol-
ume into smaller blocks. Each block is rendered independently, and
their resulting images are combined in software.

The VolumePro software automatically partitions supervolumes,
takes care of the data duplication between blocks, and blends inter-
mediate base planes into the final image. Blocks are automatically
swapped to and from host memory if a supervolume does not fit into
the 128 MB of volume memory on the VolumePro PCI card. There
is no limit to the size of a supervolume, although, of course, render-
ing time increases due to the limited PCI download bandwidth.

Volumes with less than 256 voxels in each dimension are called
subvolumes. VolumePro’s memory controller allows reading and
writing single voxels, slices, or any rectangular slab to and from
Voxel Memory. Multiple subvolumes can be pre-loaded into vol-
ume memory. Subvolumes can be updated in-between frames. This
allows dynamic and partial updates of volume data to achieve 4D

animation effects. It also enables loading sections of a larger vol-
ume in pieces, allowing the user to effectively pan through a vol-
ume. Subvolumes increase rendering speed to the point where the
frame rate is limited by the base plane pixel transfer and driver over-
head, which is currently at 30 frames/sec.

4.3 Cropping and Cut Planes

VolumePro provides two features for clipping the volume data set
called cropping and cut planes. These make it possible to visu-
alize slices, cross-sections, or other portions of the volume, thus
providing the user an opportunity to see inside in creative ways.
Figure 8(a) shows an example of cropping on the CT foot of the
visible man. Figure 8(b) shows a cut plane through the engine data.

(a) (b)

Figure 8:(a) Cropping. (b) Cut plane.

Cropping introduces multiple clipping planes parallel to the vol-
ume faces. Figure 9 shows a conceptual diagram and several exam-
ples, and Figure 8(a) shows an example image.

zmin

xmin xmax

ymin

ymax

zmax

Figure 9:Cropping of a volume data set and cropping examples.

Three slabs, one parallel to each of the three axes of the volume
data set, are defined by six registersxmin; xmax; ymin; ymax; zmin,
andzmax. SlabSx is the set of all points (x, y, z) such thatxmin �
x � xmax, slabSy is the set of all points such thatymin � y �
ymax, and slabSz is the set of all points such thatzmin � z �
zmax. Slabs may be combined by taking intersections, unions, and
inverses to define regions of visibility of the volume data set. A
sample at position (x, y, z) is visible if and only if it falls in this
region of visibility. The logic for cropping is implemented in the
Compositing unit, which ignores invisible samples.

In Figure 9, the shaded part of the volume remains visible and
the remainder is invisible. Alternatively, the same slabs could be
combined in a different way so that only the intersection of the three



slabs is visible. Note that the cropping planes defining the slabs
may fall at arbitrary voxel positions. A side effect is that cropping
is an easy way of specifying a rectilinear region of interest (ROI).

The second form of clipping is the cut plane. VolumePro sup-
ports a single cut plane with arbitrary thickness and orientation.
Samples are visible only if they lie between the two parallel sur-
faces of the cut plane; alternatively, samples are visible only if they
are outside of the cut plane. Figure 10 illustrates a cut plane and its
transition region.

Dmin

Dfalloff Dfallo ff

Dmax

0

1

Alpha correction
factor

Distancefrom origin along ray

Dmax–Dmin

Dmin

Figure 10:Cut plane with transition regions.

The two parallel faces of the cut plane are given by the plane
equations:

Ax+By + Cz �Dmin = 0

Ax+By + Cz �Dmax = 0;

whereDmin � Dmax. That is,Dmin measures the distance from
the origin to one face of the cut plane, andDmax measures the
distance from the origin to the other face. The thickness of the cut
plane isDmax �Dmin.

To allow for smooth cuts, a falloff parameter (Dfallo� ) specifies
the width of the transition from full opacity to none (see Figure 10).
Outside the cut plane,� is forced to zero. In the transition regions,
� is multiplied by a correction factor. This correction factor in-
creases linearly from zero to one. In the interior of the cut plane,�
is simply the value from the shading stage. The� correction logic
for the cut plane is in the Compositing unit.

As shown in Figure 1 on the right, VolumePro also has a 3D cur-
sor feature that inserts a hardware generated, software controlled
cursor into the volume data set being rendered. The 3D cursor al-
lows users to explore and identify spatial relationships within the
volume data. The samples for the cursor are generated in the Com-
positing unit and are blended into the volume data by�-blending.

5 vg500 Chip Architecture

The rendering engine of the VolumePro system is the vg500 chip
with four parallel rendering pipelines. It is an application specific
integrated circuit (ASIC) with approximately 3.2 million random
logic transistors and 2 Mbits of on-chip SRAM. It is fabricated in
0.35� technology and runs at 125 MHz clock frequency. In this
section we discuss a number of practical considerations that affect
the architecture of the vg500 ASIC and that lead to modifications
of the idealized pipeline of Section 3.

5.1 Parallel Pipelines

To render a data set of2563 voxels at 30 frames per second, Vol-
umePro must be able to read2563 � 30 voxels per second – that is,
approximately 503 million voxels per second. In the current imple-
mentation of VolumePro, each pipeline operates at 125 MHz and
can accept a new voxel every cycle. Thus, achieving real-time ren-
dering rates requires four pipelines operating in parallel. These can
process4� 125 � 106 or 500 million voxels per second.

The arrangement of the four pipelines in the vg500 chip archi-
tecture is illustrated in Figure 11. They work on adjacent voxel or
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Figure 11:The four parallel pipelines of the vg500 ASIC. Modules
shown in blue are off-chip memory.

sample values in the x direction. Each pipeline is connected to its
neighbor by means of the shift registers in each of the major units.
Whereas in Figure 4 the shift registers recirculate values that are
needed in the next cycle in the x direction, in Figure 11 they pro-
vide values to their neighbors in the same cycle. The exceptions
are the shift registers of the rightmost pipeline, each of which is
marked with an asterisk. These act as in Figure 4 to recirculate
values needed in the next cycle, but they send those values to the
leftmost pipeline. An off-chip Voxel Memory supplies data to all
of the pipelines, and they all write pixel values to an off-chip Pixel
Memory. The additional datapaths on the right and the off-chip
Section Memory will be discussed in Section 5.4.

5.2 Voxel Memory Organization

The vg500 chip has four 16-bit memory interfaces to Voxel Mem-
ory. A typical Voxel Memory configuration consists of four
Synchronous Dynamic Random Access Memory (SDRAM) mod-
ules. The current implementation of VolumePro uses 64-megabit
SDRAMs that provide burst mode access at 125 MHz. Voxel Mem-
ory can be extended to four SDRAMs per memory interface. Thus,
sixteen SDRAMs provide 1024 megabits (i.e., 128 megabytes) of
voxel storage. This is sufficient to hold a volume data set with 128
million 8-bit voxels or four2563 volumes with 12-bit voxels. Four
125 MHz memory interfaces can read Voxel Memory at a burst rate
of 4 � 125 million (i.e., 500 million) voxels per second, provided
that voxels can be organized appropriately in memory.



There are three architectural challenges. First, voxels have to be
organized so that data is read from Voxel Memory in bursts of eight
or more voxels with consecutive addresses. This is done by arrang-
ing voxels in miniblocks. A miniblock is a2�2�2 array of voxels
stored linearly in a single memory module at consecutive memory
addresses. All data is read in bursts of the size of a miniblock. This
is much more efficient than the arbitrary memory accesses that re-
sulted from voxel skewing in Cube-4 [14].

Second, miniblocks themselves have to be distributed across
memory modules in such a way that groups of four adjacent
miniblocks in any direction are always stored in separate memory
modules, avoiding memory access conflicts. This is done by skew-
ing [3]. Instead of skewing blocks, as in EM-Cube [13], this skew-
ing technique is applied to miniblocks in VolumePro. It ensures
that four adjacent miniblocks, i.e., miniblocks parallel to any axis,
are always in different memory modules, no matter what the view
direction is.

Third, miniblocks within a memory module must be further
skewed so that adjacent miniblocks never fall into the same mem-
ory bank of an SDRAM chip. 64-megabit SDRAMs have four in-
ternal memory banks.4 � 4 � 4 cubes of miniblocks are skewed
across the four memory banks, thus allowing back-to-back accesses
to miniblocks in any traversal order with no pipeline delays.

A voxel with coordinates(u; v; w) has miniblock coordinates
(um; vm; wm) = (u=2; v=2; w=2), which are mapped to one of
the memory modules and memory banks as follows:

Module = (um + vm + wm) mod 4

Bank = ((um � 4) + (vm � 4) + (wm � 4)) mod 4;

wheremod denotes the modulus operator and� the integer divi-
sion operator. This is illustrated in Figure 12.
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Figure 12:Organization of miniblocks in Voxel Memory.

In order to ensure that miniblocks are properly aligned for opti-
mum SDRAM performance, the Voxel Memory must be allocated
such that all dimensions of the volume object appear to be multiples
of 2 � 4 � 4 = 32 voxels. Arbitrary volumes are stored in Voxel
Memory with dimensions that are multiples of 32 voxels; they are
then automatically cropped to their original size during rendering.
The vg500 ASIC contains all necessary hardware to arrange vox-
els into miniblocks and to skew and deskew miniblocks during data
transfers to and from Voxel Memory.

5.3 Voxel Input To Rendering Pipelines

The description of the rendering pipeline in Section 3 assumes that
the Interpolation and Gradient Estimation units read voxels in the
slice-by-slice, beam-by-beam order described in Section 2. The
Voxel Memory Input Network, shown in Figure 11, distributes data
from the four Voxel Memory interfaces to the slice buffers. From
there it can be read slice-by-slice and beam-by-beam by the four
rendering pipelines.

Voxels in a miniblock are always read out of voxel memory in the
same order because they are stored sequentially to take advantage
of the burst capabilities of the SDRAMs. The miniblocks need to
be re-arranged, based on the current view direction, so that the po-
sitions of the voxels correspond to the canonical positions assumed
for tri-linear interpolation. This is achieved using simple miniblock
reorder logic in each memory interface.

Because of the skewing of miniblocks in Voxel Memory, the
four miniblocks output by the Voxel Memory controllers must be
de-skewed and potentially re-shuffled based upon the chosen view
direction. This is required so that the left-most voxel along the x
axis flows down the leftmost pipeline and adjacent voxels in x flow
down in neighboring pipelines. This is achieved with a global Voxel
Memory Input Network that connects the four memory interfaces to
the four rendering pipelines.

After the de-skewing network, miniblocks are written into the
voxel slice buffers of the four rendering pipelines. Since data is read
from voxel memory in miniblocks and processed by the pipelines
as slices, a method exists to convert from one to another. The Voxel
Memory interface actually reads two slices of voxels at a time be-
cause of the memory organization in miniblocks. Three slices of
data must be stored so that the z gradients can be computed using
central differences. After reading two slices of miniblocks and writ-
ing that data into four slice buffers, all necessary data now exists to
compute interpolated samples and gradients.

5.4 Sectioning

To keep the amount of on-chip memory for the various FIFOs
within reasonable limits, the volume data set is partitioned into sec-
tions and some intermediate values are off-loaded to external mem-
ory between the processing of sections. VolumePro implements
sectioning only in the x direction. Each section is 32 voxels wide,
corresponding to the memory organization outlined in Section 5.2.
Instead of exchanging pixels between sections as in EM-Cube [13],
VolumePro exchanges intermediate pipeline values between sec-
tions.

The impact of sectioning on the pipeline architecture is illus-
trated in Figure 11. In the right-hand pipeline of Figure 11 the shift
registers are modified to optionally write values to Section Memory
at the end of a section. The left-hand pipeline either reads values
from Section Memory (at the beginning of a section) or accepts
them from the right-hand pipeline. In effect, the Section Memory
becomes a big, external FIFO capable of holding values that need to
be recirculated in the x direction. Exactly the same values are writ-
ten to, then read from, Section Memory as would have been passed



to the next pipeline. Consequently, no approximation is made and
no visual artifacts are introduced at section boundaries.

The voxel traversal order is therefore modified. In particular,
voxels are read in slice-by-slice order within a single section. Sim-
ilarly, within slices, voxels are read in beam-by-beam order, but
with beams spanning only the width of a section. The full section
is processed front-to-back, and the intermediate values needed for
rendering near the right boundary of the section are written to Sec-
tion Memory. Then the next section is processed. Values are read
from the Section Memory in the same order that they had been writ-
ten, and they are passed through the multiplexers of Figure 11 to the
left pipeline. As far as the rendering algorithm is concerned, it is as
if the values had been generated on the previous cycle and passed
directly. That is, the same values are calculated in either case, but
in different orders.

6 VolumePro PCI Card

The VolumePro board is a PCI Short Card with a 32-bit 66 MHz
PCI interface (see Figure 2). Production shipments started in June
1999 at an initial price comparable to high-end PC graphics cards.
The board contains a single vg500 rendering ASIC, twenty 64 Mbit
SDRAMs with 16-bit datapaths, clock generation logic, and a volt-
age converter to make it 3.3 volt or 5 volt compliant. Figure 13
shows a block diagram of the components on the board and the
busses connecting them.

Voxel Memory

PCI-Bus

vg500

V-Bus

Pixel MemorySection Memory

S-Bus P-Bus

SDRAMSDRAMSDRAMSDRAM

SDRAMSDRAM SDRAMSDRAM

EEPROM Clk Gen

SDRAMSDRAMSDRAMSDRAM

SDRAMSDRAMSDRAMSDRAM

SDRAMSDRAMSDRAMSDRAM

Module0 Module1 Module2 Module3

Figure 13:VolumePro PCI board diagram.

The vg500 ASIC interfaces directly to the system PCI-Bus. Ac-
cess to the vg500’s internal registers and to the off-chip memories
is accomplished through the 32-bit 66 MHz PCI bus interface. The
peak burst data rate of this interface is 264 MB/sec. Some of this
bandwidth is consumed by image upload, some of it by other PCI
system traffic. We currently estimate about 100 MB/sec available
bandwidth for loading volume data from main memory.

Most registers are write-only and are memory-mapped via their
own PCI base address register. Volume, pixel, and section mem-
ory are directly read/write memory-mapped into the PCI address
space. The vg500 chip status is checked either by interrupts or by
polling an on-chip status register. Alternatively, a copy of the status
register gets DMA’ed to host memory when it changes. Volume-
Pro supports many standard 16-bit and 32-bit pixel formats with
on-the-fly conversion between formats during reads or writes.

The size of voxel memory is 128 MBytes, organized as four
groups with four SDRAMs each. Two 64 Mbit SDRAMs make
up Section Memory and two 64 Mbit SDRAMs of Pixel Memory
contain the rendered base plane image. They can hold up to six-
teen base planes, each with up to512 � 512 32-bit RGBA pixels.
This allows double-buffering of several base planes on the PCI card
and pipelined retrieval, warping, and blending of images. The base

plane pixels are transferred over the PCI bus to a companion 3D
graphics card for the final image warp and display. The transfer of
pixels from VolumePro, however, is the only integration with the
rest of the graphics system. In particular, the current generation
of the system does not perform any intermixing of polygons and
volumes.

Several VolumePro PCI cards can be connected to a high-speed
interconnect network for higher performance. Alternatively, sev-
eral vg500 ASICs and their Voxel Memories can be integrated onto
a single multi-processing rendering board. Volume data can be ren-
dered in blocks, similar to supervolumes, on different boards or
ASICs using coarse-grain parallelism. At the present time, how-
ever, we have no plans to implement such a multi-processing sys-
tem.

7 VLI - The Volume Library Interface

Figure 14 shows the software infrastructure of the VolumePro sys-
tem. The VLI API is a set of C++ classes that provide full access to
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Figure 14:Software infrastructure of the VolumePro system.

the vg500 chip features. VLI does not replace an existing graphics
API. Rather, VLI works cooperatively with a 3D graphics library,
such as OpenGL, to manage the rendering of volumes and display-
ing the results in a 3D scene. We envision higher level toolkits and
scene graphs on top of the VLI to be the primary interface layer to
applications. The VLI classes can be grouped as follows:

� Volume data handling. VLIVolume manages voxel data stor-
age, voxel data format, and transformations of the volume
data such as shearing, scaling, and positioning in world space.

� Rendering elements. There are several VLI classes that pro-
vide access to the features described in Sections 3 and 4, such
as color and opacity lookup tables, cameras, lights, cut planes,
clipping, and more.

� Rendering context. The VLI class VLIContext is a container
object for all attributes needed to render the volume. It is
used to specify the volume data set and all rendering parame-
ters (such as classification, illumination, and blending) for the
current frame.

The VLI automatically computes reflectance maps based on light
placement, sets up�-correction based on viewing angle and sam-
ple spacing, supports anisotropic and gantry-tilted data sets by cor-
recting the viewing and image warp matrices, and manages super-
volumes, supersampling, and partial updates of volume data. In
addition, there are VLI functions that provide initialization, config-
uration, and termination for the VolumePro hardware.



8 Conclusions

This paper describes the algorithm, architecture, and features of
VolumePro, the world’s first single-chip real-time volume render-
ing system. The rendering capabilities of VolumePro – 500 million
tri-linear, Phong illuminated, composited samples per second – sets
a new standard for volume rendering on consumer PCs. Its core fea-
tures, such as on-the-fly gradient estimation, per-sample Phong illu-
mination with arbitrary number of light sources, 4K RGBA classi-
fication tables,�-blending with 12-bit precision, and gradient mag-
nitude modulation, put it ahead of any other hardware solution for
volume rendering. Additional features, such as supersampling, su-
pervolumes, cropping and cut planes, enable the development of
feature-rich, high-performance volume visualization applications.

Some important limitations of VolumePro are the restriction to
rectilinear scalar volumes, the lack of perspective projections, and
no support for intermixing of polygons and volume data. We be-
lieve that mixing of opaque polygons and volume data can be
achieved by first rendering geometry, transferring z buffer values
from the polygon card to the volume renderer, and then rendering
the volume starting from these z values. Future versions of the sys-
tem will support perspective projections and several voxel formats,
including pre-classified material volumes and RGBA volumes. The
limitation to rectilinear grids is more fundamental and hard to over-
come.

We hope that the availability of VolumePro will spur more re-
search in new and innovative interaction techniques for volume
data, such as interactive experimentation with rendering parame-
ters. This may lead to new solutions for difficult problems, such
as data segmentation and transfer function design. Other areas for
future research are hardware support for irregular grid rendering,
accurate iso-surface rendering, and integration of polygon rasteriza-
tion and texturing into volume rendering systems. We are currently
working on a next generation system with more features while con-
tinually increasing the performance and reducing the cost.
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