
Physically Based Motion Transformation

Zoran Popovi´c Andrew Witkin∗

Computer Science Department
Carnegie Mellon University

Abstract

We introduce a novel algorithm for transforming character anima-
tion sequences that preserves essential physical properties of the
motion. By using the spacetime constraints dynamics formulation
our algorithm maintains realism of the original motion sequence
without sacrificing full user control of the editing process.

In contrast to most physically based animation techniques that
synthesize motion from scratch, we take the approach ofmotion
transformationas the underlying paradigm for generating computer
animations. In doing so, we combine the expressive richness of an
input animation sequence with the controllability of spacetime op-
timization to create a wide range of realistic character animations.
The spacetime dynamics formulation also allows editing of intu-
itive, high-level motion concepts such as the time and placement of
footprints, length and mass of various extremities, number of body
joints and gravity.

Our algorithm is well suited for the reuse of highly-detailed cap-
tured motion animations. In addition, we describe a new methodol-
ogy for mapping a motion between characters with drastically dif-
ferent numbers of degrees of freedom. We use this method to re-
duce the complexity of the spacetime optimization problems. Fur-
thermore, our approach provides a paradigm for controlling com-
plex dynamic and kinematic systems with simpler ones.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; G.1.6 [Numerical Analysis]:
Optimization.

Keywords: Human Body Simulation, Physically Based Anima-
tion, Animation with Constraints

1 Introduction

Controllable automatic synthesis of realistic character motion is a
difficult problem. The motion of a character with many degrees
of freedom (DOFs) needs to be consistent with the laws of physics.
More importantly, in order for the motion to look realistic, the entire
musculoskeletal structure must be taken into account. Controlling
this complex motion generation process adds further difficulties. In
this paper, we present a solution to the problem of generating both
controllable and realistic character animations. Instead of motion

∗now at Pixar Animation Studios.

synthesis, we take the approach of motion transformation. For ex-
ample, we transform a human running sequence by restricting the
range of motion for a knee joint to obtain a realistic run with a limp.

Any dynamically sound motion, such as captured motion or the
result of a physical simulation, can be used as an input to our trans-
formation algorithm. The first step of our algorithm constructs a
simplified character model and fits the motion of the simplified
model to the captured motion data. From this fitted motion we
obtain a physical spacetime optimization solution that includes the
body’s mass properties, pose, and footprint constraints, muscles and
the objective function. To edit the animation we modify the con-
straints and physical parameters of the model and other spacetime
optimization parameters (e.g. limb geometry, footprint positions,
objective function, gravity.) From this altered spacetime parame-
terization we compute a transformed motion sequence. Finally, we
map themotion changeof the simplified model back onto the orig-
inal motion to produce a final animation sequence.

Once the spacetime model has been constructed from the input
data, our algorithm can be turned into a motion library, since each
change in the physical formulation of the model produces a new
motion sequence. Thus, a captured motion sequence of a human run
can be turned into a running motion library capable of generating
all possible runs that fit the needs of the animator.

Our algorithm presents the first solution to the problem of edit-
ing captured motion taking dynamics into consideration. We also
describe a novel methodology for mapping motion between charac-
ters with drastically different kinematic structure. In addition, we
introduce a method for simplification of complex dynamic systems
without losing the fundamental dynamic properties of motion.

The next section describes how this work relates to other re-
search efforts. We follow with the algorithm outline, and proceed
to describe each stage of the algorithm in detail. In Section 8 we
report the results of the algorithm’s application on two human cap-
tured motion sequences. We conclude the paper with the main con-
tributions and future research directions.

2 Related Work

Forward dynamics methods compute motions of objects that obey
the laws of physics. For rigid objects (e.g. [5, 4, 21]), or secondary
motion of cloth (e.g. [12, 6]), forward dynamics techniques are
ideal because obeying physical laws is synonymous with realism.
However, active characters create motion with their own muscles.
The specific motion of real creatures depends on their intricate mus-
culoskeletal structure. Determining exact muscle forces that would
make the animation look realistic is extremely difficult. In addition,
with dynamics methods each animation frame depends on the pre-
vious frame (and consequently on all other preceding frames). The
smallest change of dynamic properties of any single frame drasti-
cally affects all consecutive frames, resulting in lack of controlla-
bility.

Spacetime constraintsapproach effectively addresses the need
for both realism and controllability of character motion [33, 9, 20,
28]. In the spacetime framework the user first specifiespose con-
straintsthat must be satisfied by the resulting motion sequence (e.g.

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permissionto make digital or hard copies of part of this work for personal orclassroom use is granted without fee provided that copies are not made ordistributed for profit or commercial advantage and that copies bear thisnotice and the full citation on the first page or initial screen of thedocument. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires priorspecific permission and/or a fee. Request permissions from PublicationsDept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper can be found in the "papers/popovic" directory.



the character pose at the beginning and end of the animation). In ad-
dition to these constraints, the user also specifies anobjective func-
tion that is a metric of performance or style such as total power con-
sumption of all of the character’s muscles. The algorithm takes this
spacetime specification and finds the motion trajectories that min-
imize the objective function while satisfying the constraints. High
realism and intuitive control give this method great appeal. The
downside, however, is that the current algorithms do not scale up to
the complexity of characters one would like to animate. The time
complexity of the spacetime formulation and convergence difficul-
ties remain a huge impediment. Another problem of these methods
is that they are extremely sensitive to the starting position of the
optimization process — if optimization begins far away from the
solution, the optimization methods often cannot converge to the op-
timal motion. As a result, spacetime optimization methods have
not been successfully applied to automatic generation of human
motion. Our work draws from the ideas of spacetime constraints
and tries to address the issues that prevent this method from being
applied to complex character models.

Robot controller design has also been applied to the domain of
realistic computer animation (e.g. [26, 32, 31, 18]). These methods
use controllers that drive the actuator forces based on the current
state of the environment. These forces, in turn, produce desired
motion. Intuitively, controllers can be thought of as a set of in-
stinctual reflexes that control muscles and collectively produce a
character’s continuous motion. Once the controllers have been fine-
tuned and synchronized to each other, this method can produce a
wide range of expressive animations [26, 19]. Furthermore, a num-
ber of different animations can be created without any additional
work, because the controllers adjust to the changes in the environ-
ment. Recently, van de Panne introduced an interesting method for
generating motion from footsteps that includes some rudimentary
physical properties[30]. Although a controller transformation algo-
rithm has been reported [17], determining controllers that produce
realistic character motion is extremely difficult, and has not been
formalized.

Another way to generate realistic motion is to attain it from the
real world. Recent availability of real-time 3-D motion capture sys-
tems provides such an alternative. Motion capture systems use sen-
sors to record absolute positions of key points on the character’s
body over a period of time. Not surprisingly, the resulting clip mo-
tion is convincing and rich with expressive detail that is almost im-
possible to generate by any computer methods. Although this type
of animation is quite realistic, it yields highly unstructured and un-
correlated motion, even when converted to joint angles within a
hierarchical character model.

Recently, a number of motion capture editing methods have been
proposed [34, 8, 15, 14, 16, 27]. These methods don’t generate mo-
tion “from scratch” like earlier described methods, but transform
existing motion sequences. Even though some of the methods solve
for the entire transformed motion sequence (and thus use the term
spacetime), they do not include any notion of dynamics. Recently
Gleicher [16] introduced a method for remapping captured motion
onto drastically different characters. While his method is capable
of producing many interesting motions, it has no means of mak-
ing the motion physically realistic. For example, a tall and lanky
character would utilize his muscles (and therefore move) in very
different ways than a more compact character. A property of all
motion editing methods that ignore inherent dynamics is that while
they can effectively transform motion by small amounts, larger de-
formations reveal undesirable, unrealistic artifacts.

An alternative approach to editing realistic motion sequences is
to extract the physical model from captured data, and perform all
editing on the computer model instead. Spacetime optimization is
a good candidate for this task. Of course, the primary problem
of spacetime methods is that they do not guarantee a solution for

3

Spacetime edit
Spacetime Motion

Reconstruction

Spacetime

2

Simplification1

Final MotionOriginal Motion

Motion Model

Fitting

Transformed

Model
Complex

Simplified
Model

4

1

Figure 1: Algorithm outline.

motion problems of complex characters such as humans. We cir-
cumvent this issue by developing smaller, abstracted models. This
model simplification is motivated by biomechanics research [7].
Blickhan and Full demonstrate the similarity in the multi-legged
locomotion of kinematically different animals. They show striking
similarities between a human run, a horse run and the monopode
bounce (i.e. pogostick). This similarity motivates our approach to
reducing the DOF count of complex kinematic structures such as
humans.

Biomechanics also studies the postulated optimality of motion
in nature [1, 2, 24]. There has been a considerable amount of work
in the area of human performance in sports [22]. This work also
reaffirms that spacetime optimization is a good choice for realistic
motion synthesis.

3 Algorithm Outline

Much like the motion capture editing methods, our algorithm does
not synthesize motion from ground zero. Instead, it transforms the
input motion sequence to satisfy the needs of the animation. Al-
though our algorithm was motivated by the desire to enable real-
istic high-level control of high quality captured motion sequences,
the same methods can be applied to motion of arbitrary source.

At its core our algorithm uses spacetime optimization because
the spacetime formulation maintains the dynamic integrity of mo-
tion and provides intuitive motion control. Because such methods
have not been shown to be feasible for human motion models, we
must also find a way to simplify the character model.

The entire transformation process breaks down to four main
stages (Figure 1):

Character Simplification. Create an abstract character model
containing the minimal number of degrees of freedom nec-
essary to capture the essence of the input motion. Map the
input motion onto the simplified model.

Spacetime Motion Fitting. Find the spacetime optimization prob-
lem whose solution closely matches the simplified character
motion.

Spacetime Edit. Change spacetime motion parameters, introduce
new pose constraints, change the character kinematics, objec-
tive function, etc.

Motion Reconstruction. Remap the change in motion introduced
by the spacetime edit onto the original motion to produce the
final animation.

Thecharacter simplificationandspacetime motion fittingstages
require a significant amount of human intervention. However, once



c)b)a)

Figure 2: Kinematic character simplification: a) elbows and spine
are abstracted away, b) upper body reduced to the center of mass,
c) symmetric movement abstraction.

the spacetime model is computed it can be reused to generate a
wide range of different animations. Thespacetime editandmotion
reconstructionstages are fully automated. They also take much less
time to compute than the first two stages, which enables computa-
tion of transformed motion sequences at near-interactive speeds.

4 Character Simplification

Instead of solving spacetime constraint optimizations on the full
character, we first construct a simpler character model which we
then use for all spacetime optimizations. There are two important
reasons for character simplification:

• DOF reduction improves performance and facilitates conver-
gence of the spacetime optimization.

• creation of an abstract model that contains only DOFs essen-
tial for the given motion captures the more fundamental prop-
erties of the body movement. As a result, detailed motion in
the input sequence will be preserved during the transforma-
tion process.

Simplified models capture the minimum amount of structure neces-
sary for the input motion task, and therefore capture the “essence”
of the input motion. Subsequent motion transformations modify
this abstract representation while preserving the specific feel and
uniqueness of the original motion. Our simplification process draws
from certain ideas in the biomechanics research [7]. We take the
view that, abstractly speaking, highly dynamic natural motion is
created by “throwing the mass around,” or changing therelative
positionof body mass. With this in mind a human arm with more
than 10 DOFs can be represented by a rigid object with only three
shoulder DOFs without losing much of the mass displacement abil-
ity. Simplification of certain body parts also depends on the type
of the input motion. For example, while the above mentioned arm
simplification may work well for the human run motion, it would
not appropriately represent the ball-throwing motion.

Simplification reduces the number of kinematic DOFs, as well
as muscle DOFs by a factor of two to five. Since each DOF is rep-
resented by hundreds of unknown coefficients during the optimiza-
tion, simplification can reduce the size of the optimization by as
many as 1000 unknowns. More importantly, a character with fewer
DOFs also creates constraints with significantly smaller nonlinear-
ities. In practice, the optimization has no convergence problems
with the simplified character models.

Character simplification is performed manually. We apply three
basic principles during this process:

DOF removal. Some body parts are fused together removing
DOFs that link them together. Elbow and wrist DOFs are
usually removed for running and walking motion sequences
where they have little impact on the motion.

Node subtree removal. In some cases of high-energy motion the
entire subtree of the character hierarchy can be replaced with

a single object, usually a mass point with three translational
DOFs. For example, the upper body of a human character
can be reduced to a mass point for various jumping motion
sequences where the upper body catapults in the direction of
the jump.

Exploit symmetric movement. Broad jump motions contain in-
herent symmetry since both legs move in unison. Thus, we
can abstract both legs with one, turning the character into a
monopode.

The simplification process ensures that the overall mass distribution
is preserved, so if a number of nodes are represented with a single
object we match the mass, center of mass and moments of inertia
of the new structure to be as close to the original as possible.

Once the character model has been simplified the original mo-
tion can be mapped onto it. Since the simplified character has
significantly fewer DOFs, this mapping is over-determined. We
definehandlesto aid us in the motion transfer process by corre-
lating essential properties between complex and simplified motion
sequences.

4.1 Handles

Handles are multi-valued time-varying functions that can be evalu-
ated on both complex and simplified character models. All handles
depend on the character pose defined by the vector of values for
each DOFq(ti). They represent intuitive measurements of various
body properties such as 3D point positions, 3D directions, distance
between two assigned body points.

Some 3D position handles are simply points on the character’s
body (e.g. the foot-ground contact position). Others, like the center
of mass position handle, depend on a much larger set of DOFs.
Direction handles are often used to represent the orientation of the
character. When kinematic topology has been drastically changed
during the simplification, it is often useful to use distance handles
to correlate various body points.

In order to match two animations, we ensure equality between
the corresponding handles. For example, if we reduced the human
upper body down to a mass point, we would use the center of mass
handle to correlate two animations. When two legs are reduced to
one, we would use the foot-floor contact point handle, defined as
the midpoint between two foot contact points and equate it with the
foot point handle of the monopode.

Let us define the collection of all handles of the original (com-
plex) motion asho(qo(t)), and leths(qs(t)) be the corresponding
simplified motion handles. We find the motion of the simplified
character by solving

Ed = [ho(qo(ti))− hs(qs(ti))]
2 (1)

min
qs (ti )

Ed (2)

for each frameti. This process is equivalent to solving an inverse
kinematics problem for each time frame of the animation. Natu-
rally, there should beat leastas many handles as there are DOFs
in the simplified character. That way the simplified motion is fully
determined byhs(qs(t)).

5 Spacetime Motion Fitting

Handles help us map the original motion onto the simplified char-
acter. However, the resulting motion is no longer dynamically cor-
rect. Before we can edit the motion with spacetime constraints we
need to create not only dynamically correct but also realistic mo-
tion of the simplified model. In other words, we need to find the
spacetime optimization problem whose solution comes very close



to the simplified model motion we computed in section 4.1. Sec-
tion 5.1 describes the spacetime constraints formulation of motion.
Subsequent sections describe our approach to finding the appropri-
ate muscles, spacetime constraints and the objective function which
would yield the motion closely matching the input sequence.

5.1 Spacetime Constraints Formulation

We obtain the body dimensions and mass distributions from biome-
chanics sources [11, 23]. All other concepts of spacetime optimiza-
tion have their intuitive counterparts in real-life.

A characteris an object performing motion of its own accord. It
has a finite number of kinematic DOFs and a number ofmuscles.
DOFs usually represent joint angles of the character’s extremities,
while muscles exert forces or torques on different parts of the body,
thus actuating locomotion. Given that both body and muscle DOFs
change through time we refer to them collectively asq(t), or sepa-
rately as kinematicqk(t), and muscle DOFsqm(t).

The task of motion synthesis is to find the desired motion of a
character. This “goal motion” is rarely uniquely specified; rather,
one looks for a motion that satisfies some set of requirements. Gen-
erally these requirements are represented either through constraints,
external forces or through the objective function.

For instance, the requirements of a sequence that animates a per-
son getting up from a chair would include the fact that the person is
sitting in the chair at timet0 and standing up at final timet1. We re-
fer to such requirements aspose constraints(Cp), and we insist that
the character must use its own muscles to satisfy these constraints.

In addition to pose constraints, the environment imposes a num-
ber of mechanical constraints(Cm) onto the body. For example,
in order to enforce the upright position of a human, we need to
constrain both of her feet to the floor. The floor exerts forces onto
the feet ensuring that the feet never penetrate the floor surface. All
mechanical constraints provide external forces necessary to satisfy
the constraints. There may also be other external forces within the
environment such as gravity and wind.

Finally, we also need to ensure dynamic correctness of the mo-
tion. We do this by constraining the acceleration of each DOF. Intu-
itively, we make sure thatF = ma holds for all degrees of freedom
at all times. In this document we call such constraintsdynamics
constraints(Cd). As long as these constraints are satisfied, we know
that the resulting motion is physically possible, given the muscles’
ability to generate forces.

When motion is defined in this way, it straightforwardly maps
onto a non-linearly constrained optimization problem: we optimize
the objective functionE(q(t), t) parameterized in space and time,
subject to the pose, mechanical and dynamics constraints:

min
q(t)

E(q(t), t) subject to

 Cp(q(t), t)= 0
Cm(q(t), t)= 0
Cd(q(t), t)= 0

(3)

This optimization is a variational calculus problem, as we solve for
functions, not values. Such problems are solved by continuous op-
timization methods, which require computation of first derivatives
of all constraints and the objective function. We use a sparse SQP
[13] method to solve spacetime optimization problems.

The following sections describe specifics of determining mus-
cles, constraints and the objective function that produce realistic
motion and closely match the input animation.

5.2 Muscles

Musclesare the primary source of character locomotion. The
biomechanics community has developed a number of complex mus-
cle models, which closely match empirical data [29, 10, 3]. While

these models tend to be very accurate, their complexity makes them
difficult to differentiate and use in full body optimizations. Since
our character model is drastically simplified, it would not make
much sense to apply realistic muscles on simplified kinematic struc-
ture. Instead, we use simple structures that account for entire mus-
cle groups, yet still induce forces onto DOFs similar to those of real
muscles.

We usegeneralized muscle forcesQ to represent the abstract
muscle. These muscles apply accelerations directly onto DOFs,
much like robotic servo-motors positioned at joints apply forces on
robotic limbs. Having a generalized muscle at each character DOF
presents the minimum set of muscles that ensures the full range of
character motion. Unfortunately, the ability to apply arbitrary gen-
eralized force onto each joint is a poor model of natural muscles.
For example, sudden non-smooth muscle forces generate extremely
jerky, unnatural motion much like motion generated by bang-bang
controllers [25].

In addition, arbitrary impulse muscle forces tend to produce
highly unstable spacetime optimization problems with poor con-
vergence properties, because the problem becomes badly scaled.
This becomes apparent when we compare the relative change in
motion resulting from changing a single coefficient of a kinematic
DOF qk(t) and a generalized muscle DOFqm(t) by the same fixed
amountδq. Naturally, motion changes are orders of magnitude
more drastic when we displaceqm(t) coefficients, since muscles
directly affect accelerations of many kinematic DOFs. This imbal-
ance in sensitivity between the coefficients of kinematic and gener-
alized muscle DOFs makes it difficult for any optimization methods
to converge to a solution.

To circumvent the problems of simple generalized force mus-
cles described above, yet still maintain a simple and differentiable
muscle model, we use a damped servo model often used in robotic
simulations [26, 19]. Each kinematic DOFqki has a corresponding
damped generalized muscle force

Qki = ks(qki − qmi )− kd(q̇ki − q̇mi ) (4)

whereqmi is the additional muscle DOF that is often interpreted as
the desired value ofqki . Differentiation with respect to DOFs and
their velocities is straightforward. This formulation does not ex-
hibit scaling problems sinceqmi is of the same scale asqki , and the
velocity dependent damping encourages smoothness. To further en-
sure smooth muscle forces akin to those found in nature, we always
include a muscle smoothness metric within the objective function
(see Section 5.4.)

5.3 Constraints

Most of the pose and mechanical constraints fall out of the nature
of the input motion. For example, in a run or walk sequence we
specify mechanical point constraints during each period the foot is
in contact with the floor. Similarly, a leg kick animation defines
a pose constraint at the time the leg strikes the target. We avoid
specifying extraneous constraints that are not essential for the input
motion, since they reduce the flexibility of the subsequent space-
time editing process.

The model simplification process may also introduce additional
constraints. For example, if the upper body was reduced to a mass
point, the mass point DOFs need to be restricted to stay within the
bounds of the upper body center of mass. This ensures that move-
ment of mass points can never cause an improper human configu-
ration.

Additional pose constraints can be introduced for further control
during motion editing. For example, we can introduce a hurdle
obstacle into the human jump motion environment, which forces
the character to clear a certain height during flight.



5.4 Objective Function

There has been much research into the optimality of motion in na-
ture [1, 2, 24]. We, however, avoid guessing the right objective
function altogether. Instead, we rely on the fact that the starting
motion is very close to the optimum. At first, our objective mea-
sured the deviation from the original motion (Ed) as described by
Equation 1. We also include the muscle smoothness objective com-
ponentEm = q̈2

m at all times. The spacetime objective is a weighted
sum of the two objective components.

E = wd

∫
Ed +

∫
Em (5)

Once the Newtonian constraint residuals become small, we gradu-
ally decreasewd all the way to zero. The existence of theEd com-
ponent early in the optimization process prevents the optimization
method from diverging from the initial motion until the spacetime
constraints are satisfied (i.e. until the dynamics integrity of the mo-
tion has been established). This approach ensures that the space-
time minimization process stays near the input motion, while at the
same time keeps the muscle forces smooth.

Upon convergence, we end up with a spacetime problem defi-
nition whose solution is very close to the original motion. With
the spacetime optimization problem successfully constructed, the
intuitive “control knobs” of the spacetime constraints formulation
can be edited to produce a nearly inexhaustible number of different
realistic motion sequences.

6 Spacetime Edit

A spacetime constraints parameterization provides powerful and in-
tuitive control of many aspects of the dynamic animation: pose and
environment constraints, explicit kinematic and dynamic properties
of the character, and the objective function.

By changing existing constraints the user can rearrange foot
placements both in space and time. For example, a human run se-
quence can be changed into a zig-zag run on an uphill slope by
moving the floor contact constraints wider apart and progressively
elevating them. The constraint timing can also be changed: extend-
ing the floor contact time duration of one leg creates an animation
that gives the appearance of favoring one leg. We can also introduce
new obstacles along the running path, producing new constraints
that, for example, require legs to clear a specified height during the
flight phase of the run. We can also affect the environment of the
run by changing the gravity constant, producing a human running
sequence on the moon surface, for example.

Changes can also be made on the character model itself. We can
change the limb dimensions or their mass distribution characteris-
tics, and observe the resulting dynamic change of the motion. We
can remove body parts, restrict various DOFs to specific ranges, or
remove DOFs altogether, effectively placing certain body parts in a
cast. For example, we can create different gimpy run sequences by
shortening the leg, making one leg heavier, reducing the range of
motion for the knee DOF, removing the knee DOF. Various muscle
properties of the character can also affect the look of transformed
motion. We can limit the force output of the muscles, forcing the
character to compensate by using other muscles.

Finally, the overall “feel” of the motion can be changed by
adding additional appropriately weighted objective components.
For example, we can produce a softer looking run by adding an
objective component that minimizes floor impact forces. Or we can
make the run look more stable by including a measure of static bal-
ance in the objective.

After each edit we re-solve the spacetime optimization problem
and produce a new transformed animation. Since the optimization

starting point is near the desired solution, and all dynamic con-
straints are satisfied at the outset, optimization converges rapidly.
In practice, while the initial spacetime optimization may take more
than 15 minutes to converge, the spacetime optimizations during
the editing process take less than two minutes.

7 Motion Reconstruction

In order to create the transformed animation of the full character
model, we reconstruct the final motion from the original motion and
two simplified spacetime motions. We apply the transformation to
the original sequence so that we modify the fundamental dynamic
properties of motion, while preserving the specific intricate details
in the original.

The reconstruction relies on both spacetime constraints and mo-
tion handles as described in Section 4.1. All spacetime constraints
are mapped to their full character equivalents. For example, foot
placement constraints are mapped onto foot constraints of the full
character. Having completed the spacetime editing stage, we have
three distinct sets of handles1

• original motion handlesho(qo)

• spacetime fit handleshs(qs)

• transformed spacetime handlesht(ht)

We define the final motion handles as

h f (q f ) = ho(qo)+ (ht(qt)− hs(qs)) (6)

essentially displacing the original handles by the difference be-
tween the two spacetime solutions. Since the right side of the
equation is known, it would seem that solving for the inverse-
kinematics-like problem of findingq f that satisfies equation 6
would complete the reconstruction. Unfortunately, the number of
handles isconsiderably smallerthan the number of DOFs in the
full character, so this problem is highly under-determined, and we
cannot directly solve forq f without accounting for the extra DOFs.

We formulate the reconstruction process as a sequence of per-
frame subproblems:

minq f
Edm(qo,q f )

subject to

{
C(q) = 0
h f (q f ) = ho(qo)+ (ht(qt)− hs(qs))

(7)

Simply stated, we follow the transformed handles and satisfy all
constraints (C(q)) while we try to be as close as possible to the
original motion.

We first formulate a measure of closeness to the original motion.
A simple objective function that measures the deviation of each
DOF Edd = (q f − qo)

2 produces undesirable results. Each DOF
needs to be carefully scaled both with respect to what it measures
(joint angles measure radians, translational DOFs measure meters),
and with respect to its importance within the character hierarchy.
For example, the change of the hip joint DOF affects the overall
motion significantly more than the same amount of change applied
to the ankle joint. In order to avoid these problems, we designed
a completely new objectiveEdm that measures the amount of dis-
placed mass between the two poses.

1For clarity, we omit the explicit time dependency of handles and DOFs.



7.1 Minimum Displaced Mass

Given two character poses described by the DOF valuesq̄ andq we
compute the total amount of displaced massEdm(q̄,q) when trans-
forming from poseq̄ to poseq. This metric is loosely analogous
to the measurement of dynamic power consumption, with the ex-
ception that we compare two kinematic (not dynamic) states. Total
displaced mass is the sum of mass displacements for each nodek in
the hierarchyEdm =

∑
k Ek.

We compute the node mass displacementEk as a body pointpi

displacement scaled with its massµi integrated over all body points
of the nodek

Ek =
∫∫∫

i
µi(pi − p̄i)

2 dx dy dz,

where each “bar”-ed symbol refers to quantities computed at pose
q̄.

Since we are only interested in therelative mass displacement,
we compute the body positions invariant of the global rotation and
translation. In other words, if

p′i = R0R1 · · ·R j−1R jxi

is the world space position of the body pointxi in the node j of
the character hierarchy, and transformationR0 contains the global
rotation and translation of the hierarchy, we define

pi = R1 · · ·R j−1R jxi =Wjxi

This notation allows us to simplifyEk

Ek =
∫∫∫

i
µi(WixiWixi − 2WixiWixi +WixiWixi) dx dy dz

= tr
(
WiM iWi

T − 2WiM iWi
T +WiM iWi

T
)

= tr
(
WiM i(Wi − 2Wi)

T
)

wheretr() is a matrix trace operator and the mass matrix tensorM i

of nodei is computed as the integral over body pointsx j of outer
products scaled by the node massmi

M i = mi

∫∫∫
j

x jxT
j dx dy dz.

Note that becauseWiM iWi
T

is a constant expression (it does not
depend onq) we remove it from the final expression.

We also compute derivatives with respect to kinematic DOFs

∂Ek

∂q j
= tr

(
∂Wi

∂q j
M i(Wi − 2Wi)

T +WiM i
∂Wi

T

∂q j

)
= tr

(
2(Wi −Wi)M i

∂Wi
T

∂q j

)
Both Ek and ∂Ek

∂q j
can be computed efficiently by recursively com-

puting the subexpressionsM iWi
T andM i

∂Wi
T

∂q j
for each node in the

hierarchy. We find thatEdm performs extremely well as a measure
of closeness between two motions.

Since the reconstruction process is performed separately for each
frame the resulting motion may, on occasion, appear non-smooth.
We correct this by defining intervals of animation where improved
smoothness is required. The problem defined in Equation 7 is then
solved collectively over the entire interval with the added smooth-
ness objectiveEsmooth = q̈2.

Jump Run
Name Minutes Name Minutes

Fitting 21 Fitting 16
Twist 1.6 Wide 0.9

Diagonal 1.4 Crossed 1.3
Unbalanced 0.6 Limp 1.7

Obstacle 1.4 Short-leg Limp 1.9
Moon 1.5

Neptune 1.3

Figure 3: SGI Octane computation times for the run and the jump
motion transformations.

c0

c1

c2

c3
c4

c5

c6

c7
c8

c9

c0

c1

c2

Figure 4: Representation of the cyclical B-spline DOFs.

8 Results

We have created two different motion libraries from which we
generated a number of different animations. We used high detail
(120Hz) motion capture data as input sequences. During the fit-
ting stage, we used drastically different simplification approaches
for the libraries in order to show the versatility of our algorithm.

All of the described motion sequences would be difficult to cre-
ate with existing motion editing tools. While it is conceivable that
a number of constraints could be introduced to enhance realism, for
some sequences it would require an overwhelming amount of work,
on par with creating a realistic motion sequence from scratch with
keyframing. In contrast, our approach requires minimal number of
intuitive changes for each transformed sequence.

8.1 Human Run

We extracted a single gait from a human run motion sequence, and
made all DOFs cyclic so that the motion could be concatenated into
a continuous run sequence of arbitrary length. We represented each
DOF with a cyclical B-spline, where the first three coefficients in-
fluence the beginning and the end of the DOF values (Figure 4).
This formulation forces endpoint values and their time derivatives
to coincide.

In the character simplification stage we removed all hand, foot
and elbow DOFs reducing the entire arm into one rigid object. Sim-
ilarly, the foot and shin are represented with a single object. We
also preserved only a few upper body DOFs. The torso, head and
shoulders have been fused into a single object that has a quaternion
ball joint at the waist. Each shoulder has a single Euler hinge joint
that allows the arm to move back and forth. This is a significant
reduction from the original configuration with a ball joint at each
shoulder. Hip joints are the only ball joints that have been preserved
during the simplification. (Figure 5). We should note that reducing
the arms to a single object with only one DOF significantly restricts
the amount of change each resulting motion can undertake. If we
wanted to allow greater ability to alter the movement of arms, we
would allow for additional DOFs at each shoulder.

In order to map the human motion onto the biped we introduce
several types of handles:

Foot contact points. On the human character the floor contact
points for each foot are located at the ball of the foot. On the



Hinge Joint

Ball Joint

x

y

z

z

z

Figure 5: Biped: Simplified character for the human run motion
library.

biped these points are shin endpoints. The handles are tracked
throughout the entire animation, not just while the foot is on
the ground.

Character mass center.The mass centers for the human and the
biped follow the same trajectories.

Upper body mass center.We define the upper body as the char-
acter subtree rooted at the waist joint. Again, the mass centers
follow the same trajectories.

Arm mass centers. The character subtree rooted at the shoulder
joint is a three link chain for the human character and a single
object for the biped. We correlate the mass centers for both
the left and the right arm subtree.

Torso orientation. The body direction is tracked the orientation of
the lower abdomen node.

Shoulder orientation. The shoulder orientation handle is defined
as the unit vector formed by the two points located at the left
and right shoulder.

We also defined two mechanical constraints corresponding to the
foot-ground contact events. These constraints need to be mechan-
ical since the floor exerts forces onto the body keeping the foot in
place. We also constrained the forces produced by the floor con-
straints so that they are non-negative in the upward direction. This
effectively indicates that the floor provides forces which prevent
floor penetration, but not floor separation. In addition, we pro-
vided a muscle for each kinematic DOF of the biped character. The
muscle coefficients were identical for each muscle:ks = 4.0 and
kd =−0.04. Our experiments showed that different coefficients af-
fected the speed of convergence for the optimization, but not the
resulting motion itself.

We used the objective function described in Section 5.4. Opti-
mizations during the spacetime model fit stage took about 21 min-
utes to compute on an SGI Octane. Once the spacetime model was
completed we created numerous realistic animations by editing var-
ious spacetime formulation parameters.

Wide Footsteps. We repositioned the footprint mechanical
constraints to be wider apart so that the character would have to
leap significantly farther to the side at each step. We kept the con-
straint time intervals unchanged. Since each step now covered more
distance, the overall resulting motion had leaps of smaller height
(Figure 8). The appropriate change in the upper body orientation
was apparent in the resulting motion.

Crossed Footsteps. We moved footprints to the opposite side
of the body, forcing the character to twist at each step, criss-crossing
the feet. Again we kept the constraint time intervals unchanged.
We also introduced the “slippery floor” objective component, which
penalized the component of the floor reaction forces in the floor
plane. This effectively forced the character to rely less on the floor
friction during landing.

Moon Run. In order to create a human run sequence on the
moon, we reduced the gravity constant to1.6m/s2, and we allowed
for more time to elapse by applying a global time warp. The result-
ing run was slower and had much higher leaps appropriate for the
low gravity environment.

Neptune Run. We also increased the Earth’s gravity by tenfold
to see how the running sequence would adjust to such extreme grav-
itational field2. Naturally, no human muscle forces could possibly
produce a running motion under such extreme gravitational field.
Consequently we removed any existing bounds on the muscle ac-
tuation forces. The resulting flight phase of the run was so low to
the ground that the running character had the appearance of speed
walking.

Limp Run. We removed the left knee DOF, creating the appear-
ance of the leg being put in a cast. We also reduced the duration of
the left footstep mechanical constraint, while we increased the du-
ration of the right footstep. The advent of a straight leg introduced
a new problem.

The stiff leg can move either to the outside or to the inside during
the flight phase to avoid hitting the ground. These are two distinct
local minima. If a leg were to move towards the inside, a more
dynamically stable option, it would inevitably collide with the other
leg. To prevent this, we included the objective component which
penalizes for the closeness of the two foot points during the small
time period just as the stiff leg leaves the ground. Effectively, we
are biasing the solution towards the one where the legs do not go
through each other. We do not need to include this objective during
the entire animation since we only need to intervene at the specific
point of the solution space bifurcation. We note that this problem
would not be solved with the collision detection since the choice to
go inside or outside occurs far before the actual collision. In the
final motion sequence the character leans to the side and swings
the right leg in a more dramatic fashion, creating a realistic (albeit
painful) limp run.

Short-Legged Limp Run. In order to test the limits of char-
acter model modifications, we shortened the shin of the right leg
and fixed the left knee DOF as in thelimp run. We also kept the
non-penetration inequality constraint for the feet during flight. The
output running sequence has an extreme limp, with the leg in the
cast swinging more to the side due to the shorter right leg. The
motion has an extreme lean towards the shorter leg. The lean ap-
pears to be right on the edge of falling. The motion maintains the
dynamic balance by significantly increasing the push-off forces of
the shortened leg.

8.2 Broad Jump

We created the broad jump motion library to explore how far we
could simplify the character without losing the dynamic essence
of the jump. In order to demonstrate the power and the flexibility
of the simplification tools, we used drastically different simplifi-
cation approach than the one used on the human running motion
(Figure 6).

2Neptune’s gravitational acceleration is88.98m/s2



Figure 6: Full and simplified characters for the human run and
broad jump.

Joint
Prismatic

x

x

y
y

y

z

z

Figure 7: Hopper: Simplified character for the broad jump motion
transformation.

The entire upper body structure is reduced to a single mass point.
The mass point moves with three prismatic muscles that push off
from the rest of the body (Figure 7). Since the legs move together
during a broad jump, we turned them into a single leg. Although it
was not necessary, we also turned the knee hinge joint into a pris-
matic joint, to show that even with this completely changed charac-
ter model the dynamic properties of the broad jump are preserved.
The simplified character (hopper) hasten DOFs of which six are
the global position and orientation of the model. It does not contain
any angular joints.

The broad jump motion sequence lasts more than two seconds,
which is more than twice as long as the run gait cycle. Since the
sequence duration is linearly proportional to the size of the problem
it would appear that optimization would take considerably longer.
However, due to fewer DOFs, the spacetime fitting optimization
converges within 16 minutes. Subsequent transformation optimiza-
tions all finish within 2 minutes on an SGI Octane (Figure 3).

In order to fit the human broad jump motion onto the hopper we
defined a number of handles:

Foot position. For the human character, we defined the foot han-
dle as the midpoint between the two balls of the feet. The
hopper’s foot is located at the shin’s endpoint.

Leg extension. For the human character, the leg extension is mea-
sured as a distance handle between the foot handle and the
midpoint between the two hips. For the hopper, this handle is
measured as a distance between the foot handle and the loca-
tion of the prismatic hip.

Body mass center.For both the human and the hopper, the body
mass center point is the center of mass for the entire hierarchy.

Upper body mass center.For the human character the upper body
mass center is the center of mass of the subtree rooted at the
lower abdomen. The hopper’s upper body mass center is iden-
tical to the location of the upper body mass point.

Torso orientation. We preserved the body orientation by tracking
the orientation of the lower abdomen character node. For both

the human and the hopper character, this is the direction of the
unit vector pointing down the forward direction in the local
frame of the lower abdomen node.

In addition to handles, we also defined a number of constraints.
Again, we used mechanical constraints for the foot-ground con-
straints. We also specified the initial and the final upright pose
constraint. These constraints are needed to make the endpoints of
the animation invariant. We also restricted the freedom of move-
ment for the upper body mass point, with simple bound constraints
in each dimension. Without these constraints, the upper body mass
point would be free to move outside the range of motion of a human
upper body center of mass. The rest of this section describes each
transformed jump in more detail.

Twist Jump. We introduced the torso orientation pose constraint
at the end of the animation, which mandates a 90 degree turn. The
output motion clearly shows the change in the anticipation and the
introduction of the body twist during the flight stage. The land-
ing stage has also changed to accommodate the sideways landing
position.

Diagonal Jump. We displaced the landing position to the side
and constrained the torso orientation to point straight ahead at all
times. This change realigned the push-off and anticipation stages
in the direction of the jump. Since the jump length was increased,
the entire resulting motion appears more impulsive.

Obstacle Jump. We raised the landing position and introduced
a hurdle, which forces a raising of legs during the flight stage. As
a result, the character push-off is more vertical, and the legs tuck in
during the flight.

Unbalanced Jump. We removed the final pose constraint that
imposed the upright position. In the resulting sequence, the char-
acter never uses its muscles to stand up upon landing, since this
would require extra energy. Instead of straightening up the charac-
ter tumbles forward giving the appearance of poor landing balance.

In conclusion, our experiments show that, despite the extreme
simplification, the hopper spacetime model still encapsulates the
realistic properties of the broad jump with surprising accuracy.

8.3 Limitations

Although our algorithm has been effective for a number of input
motion sequences and for a wide spectrum of transformed motion
animation sequences, a number of possibilities for improvement re-
main.

It appears that our methodology is best suited for the animation
sequences containing high-energy, dynamic character movement.
Other motion sequences that are more lethargic or kinematic, like
picking up an object or getting up from the chair are not well suited
for our dynamic transformation framework. Of course, it is still
possible to apply our technique to such animations, but the benefits
of a full-blown dynamics representation would not be large. In gen-
eral, the non-realism for such motions is much less of an issue. The
more a particular motion contains visible dynamic properties, the
more suitable it would be for our motion transformation algorithm.

The main shortcoming of our approach is that large portions of
the motion fitting algorithm stage are performed manually. We
have found the simplification process quite intuitive. The simpli-
fication is performed only once per input motion sequence, so the
effort spent by the motion library creator is amortized over the large
number of possible transformed animation sequences. Neverthe-
less, automating this manual decision-making process would enable



on-the-fly construction of a physically based spacetime formulation
from an input animation.

Furthermore, specific decisions in the motion fitting stage di-
rectly affect the types of modifications that can be performed on
the motion. For example, if we wanted to add a waving gesture to
the human running sequence we could not simplify the waving arm
to a single rigid object as we did in the biped model. Consequently,
a modification of the simplification process might be necessary in
order to achieve a transformation which was unforeseen during the
motion fitting process. Such modifications break down the motion
library concept.

Since all dynamics computations are performed on the simplified
model, there is no guarantee that the reconstruction stage of the al-
gorithm would preserve the dynamics properties. In fact, the final
motion sequence isnot physically realistic in the absolute sense,
simply due to the fact that no dynamics computations are done
on the full character model. Our algorithm preserves theessen-
tial physical properties of the motion. This makes our algorithm
ill-suited for applications which require that a resulting motion con-
tains all the forces involved in the character locomotion.

9 Conclusion

Our algorithm presents the first solution to the problem of editing
captured motion that takes dynamics into consideration.

We also describe a novel methodology for mapping motion
between characters with drastically different kinematic structures
which broadens the applicability of motion capture data to anima-
tion of characters that do not exist in nature.

The paper also presents a method for control of complex dy-
namic systems with simpler ones. These ideas can be further devel-
oped into a realtime optimal robot control planner.

Lastly, these methods can be used for motion analysis in biome-
chanics and perhaps help prove the very ideas that motivated this
algorithm.

10 Acknowledgements

This research was supported by the Schlumberger Foundation Fel-
lowship and National Science Foundation award IRI9502464. The
authors wish to thank R.J. Full for motivating certain biomechan-
ics aspects of this work. We also thank Sebastian Grassia, Jovan
Popović, Andrew Willmott, Elly Winner and our reviewers for the
valuable comments during the preparation of this paper.

References
[1] R. M. Alexander. Optimum walking techniques for quadrupeds and bipeds.J.

Zool., London, 192:97–117, 1980.

[2] R. M. Alexander. Optimum take-off techniques for high and long jumps.Phil.
Trans. R. Soc. Lond., 329:3–10, 1990.

[3] K.N. An, B.M. Kwak, E.Y. Chao, and B.F. Morrey. Determination of muscle and
joint forces: A new technique to solve the indeterminate problem.J. of Biomech.
Eng., 106:663–673, November 1984.

[4] David Baraff. Curved surfaces and coherence for non-penetrating rigid body
simulation. InComputer Graphics (SIGGRAPH 90 Proceedings), volume 24,
pages 19–28, August 1990.

[5] David Baraff. Fast contact force computation for nonpenetrating rigid bodies. In
Computer Graphics (SIGGRAPH 94 Proceedings), July 1994.

[6] David Baraff and Andrew Witkin. Large steps in cloth simulation. In Michael
Cohen, editor,Computer Graphics (SIGGRAPH 98 Proceedings), pages 43–54,
July 1998.

[7] R. Blickhan and R. J. Full. Similarity in multilegged locomotion: bouncing like
a monopode.J Comp. Physiol. A, 173:509–517, 1993.

[8] Armin Bruderlin and Lance Williams. Motion signal processing. InComputer
Graphics (SIGGRAPH 95 Proceedings), pages 97–104, August 1995.

[9] Michael F. Cohen. Interactive spacetime control for animation. InComputer
Graphics (SIGGRAPH 92 Proceedings), volume 26, pages 293–302, July 1992.

[10] Roy D. Crownninshield and Richard A. Brand. A physiologivcallly based crite-
rion of muscle force prediction in locomotion.J. Biomechanics, 14(11):793–801,
1981.

[11] Paolo de Leva. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parame-
ters.J. of Biomechanics, 29(9):1223–1230, 1996.

[12] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in charac-
ter animation. In Michael Cohen, editor,Computer Graphics (SIGGRAPH 98
Proceedings), pages 85–94, July 1998.

[13] P.E. Gill, M.A. Saunders, and W. Murray. SNOPT: An SQP algorithm for large-
scale constrained optimization. Technical Report NA 96-2, University of Cali-
fornia, San Diego, 1996.

[14] Michael Gleicher. Motion editing with spacetime constraints. In Michael Cohen
and David Zeltzer, editors,1997 Symposium on Interactive 3D Graphics, pages
139–148. ACM SIGGRAPH, April 1997. ISBN 0-89791-884-3.

[15] Michael Gleicher. Retargeting motion to new characters. InComputer Graphics
(SIGGRAPH 98 Proceedings), pages 33–42, July 1998.

[16] Michael Gleicher and Peter Litwinowicz. Constraint-based motion adaptation.
The Journal of Visualization and Computer Animation, 9(2):65–94, 1998.

[17] J. K. Hodgins and N. S. Pollard. Adapting simulated behaviours for new charac-
ters.SIGGRAPH 97, pages 153–162, 1997.

[18] Jessica K. Hodgins. Animating human motion.Scientific American, 278(3):64–
69, March 1998.

[19] Jessica K. Hodgins, Paula K. Sweeney, and David G. Lawrence. Generating
natural-looking motion for computer animation. InProceedings of Graphics
Interface 92, pages 265–272, May 1992.

[20] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hierarchical spacetime
control. InComputer Graphics (SIGGRAPH 94 Proceedings), July 1994.

[21] Matthew Moore and Jane Wilhelms. Collision detection and response for com-
puter animation. InComputer Graphics (SIGGRAPH 88 Proceedings), vol-
ume 22, pages 289–298, August 1988.

[22] M.G. Pandy, F. E. Zajac, E. Sim, and W. S. Levine. An optimal control model of
maximum-height human jumping.J. Biomechanics, 23:1185–1198, 1990.

[23] D.J. Pearsall, J.G. Reid, and R. Ross. Inertial properties of the human trunk of
males determined from magnetic resonance imaging.Annals of Biomed. Eng.,
22:692–706, 1994.

[24] A. Pedotti, V. V. Krishnan, and L. Stark. Optimization of muscle-force sequenc-
ing in human locomotion.Math. Biosci., 38:57–76, 1978.

[25] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko.
The Mathematical Theory of Optimal Processes. John Wiley and Sons, New
York, N.Y., 1962.

[26] Marc H. Raibert and Jessica K. Hodgins. Animation of dynamic legged loco-
motion. InComputer Graphics (SIGGRAPH 91 Proceedings), volume 25, pages
349–358, July 1991.

[27] C. Rose, M. F. Cohen, and B. Bodenheimer. Verbs and adverbs: Multidimen-
sional motion interpolation.IEEE Computer Graphics & Applications, 18(5),
September – October 1998.

[28] C. Rose, B. Guenter, B. Bodenheimer, and M. Cohen. Efficient generation of mo-
tion transitions using spacetime constraints. InComputer Graphics (SIGGRAPH
96 Proceedings), pages 147–154, 1996.

[29] A. Seireg and R. J. Arvikar. The prediction of muscular load sharing and joint
forces in the lower extremities during walking.J. Biomechanics, 8:89–102, 1975.

[30] M. van de Panne. From footprints to animation.Computer Graphics Forum,
16(4):211–224, 1997.

[31] Michiel van de Panne and Eugene Fiume. Sensor-actuator networks. InCom-
puter Graphics (SIGGRAPH 93 Proceedings), volume 27, pages 335–342, Au-
gust 1993.

[32] Michiel van de Panne and Eugene Fiume. Virtual wind-up toys. InProceedings
of Graphics Interface 94, May 1994.

[33] Andrew Witkin and Michael Kass. Spacetime constraints. InComputer Graphics
(SIGGRAPH 88 Proceedings), volume 22, pages 159–168, August 1988.

[34] Andrew Witkin and Zoran Popovi´c. Motion warping. InComputer Graphics
(SIGGRAPH 95 Proceedings), August 1995.



Figure 8: Frames from the crossed footsteps, limp, wide footsteps run; and the diagonal, obstacle, unbalanced, and twist jump.


