
View-Dependent Geometry

Paul Rademacher
University of North Carolina at Chapel Hill

ABSTRACT
When constructing 3D geometry for use in cel animation, the

reference drawings of the object or character often contain various
view-specific distortions, which cannot be captured with
conventional 3D models. In this work we present a technique
called View-Dependent Geometry, wherein a 3D model changes
shape based on the direction it is viewed from. A view-dependent
model consists of a base model, a set of key deformations
(deformed versions of the base model), and a set of corresponding
key viewpoints (which relate each 2D reference drawing to the 3D
base model). Given an arbitrary viewpoint, our method
interpolates the key deformations to generate a 3D model that is
specific to the new viewpoint, thereby capturing the view-
dependent distortions of the reference drawings.

Keywords: Cartoon animation, 3D animation, rendering, animation
systems, non-photorealistic rendering, 3D blending

CR Categories: I.3.5 surface and object representations; I.3.3 display
algorithms

1 INTRODUCTION
Cartoon animation has continually taken advantage of

developments in computer graphics. Three-dimensional elements
have been used to render crowds, buildings, scenery, and even
main characters. When these 3D objects are created, the
modelers typically begin with a set of reference drawings of the
object (the model sheet) showing it from different viewpoints.
Unlike photographs or technical illustrations, these hand-created
images do not correspond to a precise physical space – the artists
who draw them try to achieve the best aesthetic effect, and are not
bound to geometric precision. As a result, these drawings
typically contain many subtle artistic distortions, such as changes
in scale and perspective (also noted by [Zori95]), or more
noticeable effects such as changes in the shape or location of
features (e.g., the face, hair, and ears of Figure 1). Because these
distortions differ in each drawing and do not correspond to a 3D
geometric space, conventional 3D models are unable to capture
them all. As a result, these view-specific distortions are often lost
as we move from the artistic 2D world to the geometric 3D world.

One might attempt to remedy this problem using existing 3D
modeling and animation tools by directly modifying the object at
selected keyframes of the final animation, to match the drawings
better. However, this approach is only feasible if the camera path

is fixed, and might be prohibitively expensive if the object is
replicated many times from different angles (e.g., in a crowd).

In this paper, we propose to make the view-dependencies an
inherent part of the model, defining them only once during the
modeling phase. The appropriate distortions can then be
generated automatically for any arbitrary viewpoint or camera
path.

We accomplish this with a technique we call View-
Dependent Geometry – geometry that changes shape based on the
direction it is seen from. A view-dependent model consists of a
base model (a conventional 3D object) and a description of the
model’s exact shape as seen from specific viewpoints. These
viewpoints are known as the key viewpoints (which are
independent of the camera path that will be used during
rendering), and the corresponding object shapes are the key
deformations. The key deformations are simply deformed
versions of the base model, with the same vertex connectivity.
Given an arbitrary viewpoint or camera path, the deformations are
blended to generate a new, view-specific 3D model.

Original Input

Reference DrawingsBase model

Key deformations

Key viewpoints

View-Dependent Model

Figure 1 Example components of a view-dependent model

View-dependent models are able to capture different looks
for an object from different viewing directions. By creating a key
deformation for each reference drawing, we can create models
that automatically respond to any given viewing direction or
camera path, yielding the proper artistic distortions.

This paper describes how to construct and render view-
dependent models, both static and animated. It discusses the
various interpolation issues, and shows how to deal with sparse
deformations. Several examples of the technique’s applicability
to animation are given. We note, however, that View-Dependent
Geometry is not limited to the specific driving problem of artistic
distortions, but rather presents a general method – that of allowing
an object’s shape to vary in response to view direction – which
may be of use in other areas of computer graphics as well.

 –––––––––––––––––––––––––––––––––––

UNC Department of Computer Science, Sitterson Hall, CB #3175,
Chapel Hill, NC, 27599-3175. Email: rademach@cs.unc.edu

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permissionto make digital or hard copies of part of this work for personal orclassroom use is granted without fee provided that copies are not made ordistributed for profit or commercial advantage and that copies bear thisnotice and the full citation on the first page or initial screen of thedocument. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires priorspecific permission and/or a fee. Request permissions from PublicationsDept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper can be found in the "papers/rademach" directory.

2 PREVIOUS WORK
The problem of cartoon animation was addressed very early

in computer graphics, for example by [Levo77, Hack77, Reev81].
Many computer systems have since been designed to aid in
traditional animation. [Dura91] provides an overview of many of
the issues and tradeoffs involved. [Litw91] describes the Inkwell
system, based on 2-D geometric primitives. [Feke95] describes
TicTacToon, which mimics the workflow of a traditional
animation studio. [Robe94b] presents an overview of different
commercial software packages for cartoons, and [Robe94a]
describes Disney’s CAPS system, the most successful usage of
computers in cel animation to date. Many techniques of cartoon
animation were introduced to the graphics literature by [Lass87].

The above papers describe general cel animation systems;
there have also been many recent publications describing specific
methods for graphics in cartoons. [Libr92] describes a system
which takes as input a set of vector-based drawings, and
parametrically blends them to interpolate any number of defined
features. [Pfit94] describes the wildebeest scene in Disney’s The
Lion King. [Guag98] describes similar techniques in Disney’s
Mulan, as well as their enhanced 2.5-D multiplane system, Faux
Plane. [Wood97] shows how to render multiperspective
panoramas of backgrounds for use in cartoons. Finally, Correa
demonstrates a method for integrating texture mapping with cel
animation [Corr98]. Our method is similar in nature to Correa’s.
The common philosophy is that one should not discard the
inherent expressiveness of the 2D artist as 3D computer graphics
are incorporated into the animation. In their work, they apply
textures to hand-drawn animated sequences (thereby retaining the
artistry of the drawn animation) whereas in our method we create
3D models that are able to capture the artistic distortions in
multiple drawings of an object.

Our method involves issues in 3D interpolation and
deformations. Related work includes [Beie92, Lee95, Lerios95].
Our method is also similar to [Debe98], where textures – rather
than geometry – are blended in response to the current viewpoint.

3 CREATING AND RENDERING VIEW-
DEPENDENT GEOMETRY
A view-dependent model is composed of a base model and a

set of deformations specifying the model’s shape as seen from
specific viewpoints. This section discusses how to determine
these key viewpoints, how to construct the corresponding
deformations, and how to blend between the different
deformations as the object is viewed from an arbitrary location.

3.1 Creating View-Dependent Models
The inputs to our system are a conventional 3D model of an

object (the base model) and a set of drawings of the object from
various viewpoints (Figure 2 shows an example model created as
a polygonal mesh in 3D Studio Max, and a single hand-drawn
image). The base model is created using standard 3D modeling
software. It represents the best-fit geometry to the complete set of
drawings (since the context is artistic animation, “best-fit” can be
interpreted in an intuitive – and not necessarily numerical –
sense). In this section we assume the base model is rigid
(animated models are discussed in Section 4).

3.1.1 Aligning the base model and the images

The first step is determining a viewpoint for each drawing.
That is, we find a camera position and orientation relative to the
base model, with a projection that best matches the given drawing
(the current implementation uses perspective cameras, although
this discussion also applies to parallel projections). Because of
the artistic distortions, exact alignment of the model with the
drawing is not possible. We therefore cannot use standard linear
correspondence methods such as in [Faug93] (although non-linear
methods might prove useful in future work). Note, however, that
exact alignment is not actually necessary in our context, since the
features in the 3D model that cannot be aligned will be deformed
to match the image in the next step.

In the current implementation the user manually aligns the
model with each drawing by rotating and translating the camera
until the main features match. Figure 3 shows the model
superimposed over a drawing after it has been manually aligned.

3.1.2 Deforming the base model

There are many existing techniques for deforming 3D
models. For example, one may use free-form deformation lattices
[Sede86], “wires” [Sing98], or various other existing methods.
These all operate in 3D space, thereby permitting arbitrary
changes to the object's shape.

For our application, however, full 3D deformations are not
always necessary. Since we are ultimately concerned with the
model’s shape as seen from only a single fixed viewpoint (for
each reference image), we can perform the majority of the
deformations in 2D, parallel to the image plane of the camera.
This makes the deformation step considerably easier than the full
3D modeling required to originally build the base model.

The current implementation of the deformation system is
quite straightforward. Given a polygonal mesh representation of
the model, the user picks a vertex. All vertices within a specified

Figure 2 A reference drawing of a character, and the
base model. The model is constructed using standard
3D modeling software.

Figure 3 Construction of the view-dependent model. We first align the base model to the
drawing – this establishes the key viewpoint. We then deform the model to match the
drawing (the drawing is not altered). On the right we see the final key deformation.

distance r in 3D of the selected vertex are then also selected. As
the user drags the original vertex across the image plane, the other
vertices are dragged in the same direction with a scaling factor of
(1-d/r)2, where d is the distance of a given vertex to the originally-
chosen point, and r is the selection radius, both in world units.
The vertices’ Z-distances from the camera remain unchanged.
This simple method permits relatively smooth deformations
(dependent on the resolution of the underlying mesh). The middle
still in Figure 3 shows a deformation on the example model. The
currently-selected group of vertices is shown in red.

Besides dragging vertices across the image plane, our
implementation also allows the user to push and pull vertices in
the Z direction (towards or away from the camera). This is
necessary to fix vertices that accidentally pass through the mesh
as they are translated on the image plane. A more sophisticated
implementation should provide an entire suite of tools including
arbitrary rotations and scalings of groups of vertices – as with any
modeling application, the quality of the interface can greatly
influence the quality of the resulting mesh.

 Note that the topology (vertex connectivity) of the model
does not change during the deformation; only the vertex locations
are altered. This greatly simplifies the subsequent interpolation
step. Also note that the drawings are not altered – only the base
model is deformed.

The last image in Figure 3 shows the model after the
deformation process. Comparing this with Figure 2, we see that
the deformed model matches the reference drawing’s shape more
closely than the base model.

After the object and image are matched to the user's
satisfaction, the deformed object is saved to file as a key
deformation, and the aligned camera location is saved as a key
viewpoint.

3.2 Rendering View-Dependent Models
In the previous step we saw how to specify what the model

should look like when seen from specific, discrete viewpoints.
These viewpoints and deformations are independent of the final
camera path (they are inherent components of the model itself),
and are constructed a priori in the modeling phase. At rendering
time we need to determine – given an arbitrary camera direction
relative to the model – what the object’s 3D shape should be. The
rendering process proceeds as follows:

1) Find the three nearest key viewpoints surrounding
the current viewpoint.

2) Calculate blending weights for the associated key
deformations.

3) Interpolate the key deformations to generate a new
3D model for the current viewpoint.

4) Render the resulting interpolated 3D model.

This process is similar to the view-dependent texture
mapping of [Debe98], in which three textures (on a regular grid
called a “view map”) are blended to capture reflectance and
occlusion effects in multiple images of an object.

3.2.1 Finding the nearest surrounding key viewpoints

First we must find the nearest key viewpoints surrounding
the current viewpoint. In this paper we consider only the viewing
direction for the key and current viewpoints, and not the distance
from the cameras to the object (we also assume, without loss of
generality, that the view directions point towards the centroid of
the object). Since we do not differentiate between distances, we
can map the viewing directions to points on a viewing sphere
around the object. To find the surrounding key viewpoints, we
find the three points on this sphere whose spherical triangle
contains the current viewpoint (Figure 5).

current view
direction

key
viewpoints key viewpoints

current view
direction

Figure 5 The key viewpoints surrounding the current viewpoint
are given by the intersected spherical triangle on the viewing
sphere. This is equivalent to the corresponding planar triangle on
the convex hull of sphere points.

However, we can avoid working in the spherical domain by
noting that a spherical triangle is simply the projection onto the
sphere of the planar triangle between the three vertices.
Therefore, if the current viewpoint maps to the spherical triangle
between three given keys, it also maps to the corresponding planar
triangle. This leads to the following simple method for finding
the surrounding viewpoints: as a preprocess, project the key
viewpoints to a sphere around the object, and then compute the
convex hull of these points; this gives a triangulation around the
object (any convex hull algorithm that avoids creating long,
splintery triangles can be used. Our current implementation uses

Figure 4 Viewpoints for each key
deformation are shown as spheres
around the model. To compute the
shape as seen from the current
viewpoint, we find the nearest three
key viewpoints (indicated in red) and
interpolate the corresponding 3D
deformations.

[Wats81]). At rendering time, find the face in the convex hull
which is intersected by a ray from the current camera to the sphere
center. The intersected triangle denotes the three key viewpoints
surrounding the current camera (note that the result of the
intersection test may be zero or two points if the key viewpoints
do not fully enclose the object - discussed further in Section 3.3).

Figure 4 shows the key viewpoints of our example view-
dependent model, projected onto a sphere. The convex hull for
these points is displayed in wireframe. For each rendered view,
we project a ray from the eye towards the sphere center; the
intersected triangle of the hull is shown in green. The vertices of
this triangle (shown in red) correspond to the three nearest key
viewpoints for the current view.

3.2.2 Calculating the blending weights

Given the intersection of a viewing ray with one of the
triangles from the previous section, the blending coefficients are
given directly by the barycentric coordinates w1, w2, w3 of the
intersection point. These weights are continuous as the camera is
moved within and across triangles. Furthermore, one of the
barycentric coordinates will reach a value of one – and the other
two weights will equal zero – when the current viewpoint exactly
matches a key viewpoint (i.e., when the intersection point is at a
triangle vertex). When this occurs, the blended model will exactly
match the one key deformation corresponding to that viewpoint.

The blending weights can be scaled exponentially to alter the
sharpness of the transition between adjacent deformations. We
define these new, scaled weights as:

ααα

α

321

,

www

w
w i

i ++
=

where α is the sharpness factor. As α grows >1, the resulting
blended model moves more quickly towards the nearest key
deformation. As α becomes <1, the blend is more gradual. The
next section discusses the actual interpolation of the deformed
models’ vertices, given the three blending weights w1’ , w2’ , and
w3’ .

3.2.3 Interpolating the key deformations

The final deformed model for the current viewpoint is
generated by interpolating corresponding vertices from the three
nearest key deformations. Since the key deformations all share
the same vertex connectivity, the vertices correspond directly –
and interpolation is a simple matter of computing a weighted
blend of the corresponding vertices’ positions in 3-space.

Since the interpolation is computed independently for each
vertex in the final model, we can limit our discussion here to a
single vertex v. We denote the vertices corresponding to v at each
of the N key deformations as {v1, v2, ... , vN}. Each of these
vertices is the 3-space location of v under the deformation
corresponding to one particular image. We now denote the three
vertices from the nearest key deformations as vi, vj, vk. Our
current implementation uses a linear interpolation scheme, and
thus the vertex v is given as:

,
3

,
2

,
1 wvwvwvv kji ++=

where w1’ is the weight corresponding to the first key
deformation, vi, and similarly for w2’ and w3’ .

One could obtain smoother blends by applying higher-order
interpolation. This would consist of taking the set of vertices v1...
vN and fitting a higher-order surface to it, yielding a smooth tri-
patch (with the vertex connectivity given by the convex-hull
triangulation). This tri-patch would be locally parameterized by
two of the weights w’ (since the third is always one minus the sum
of the first two). Given an arbitrary viewing direction, a single
point is computed on this surface and used as the current location
for v.

Another interpolation scheme worth investigating for future
work is that of Radial Basis Functions, a multidimensional
learning-based technique. These are used by [Libr92] to generate
artistic images interpolated from vector-based drawings.

Note that the above discussion only deals with the vertex-
wise smoothness of the interpolation. We do not enforce any
global constraints on the deformations or on the resulting
interpolation (e.g., ensuring the mesh doesn’t pass through itself,
enforcing mesh curvature constraints, etc.). Doing so would
involve a tradeoff between the quality of the resulting meshes and
the extent of allowable deformations.

3.2.4 Rendering the resulting 3D model

In this paper, we display the resulting model using non-
photorealistic rendering techniques, consisting of a non-standard
lighting scheme and a silhouette-rendering scheme. The object is
lit and shaded with a method similar in nature (though not
identical) to [Gooc98]. Our lighting equation is:

() ()()
() ()() 432

211

ˆˆ

ˆˆ

kkCCnl

kkCCnlCkC

basecool

basewarmbaseafinal

∗∗−•+

∗∗−•+=

where l1 and l2 are the positions of two lights on opposite sides of
the surface, n is the surface normal, Cfinal is the final color for the

Figure 6

Top row: Different views generated as we
rotate our camera about the model. They are
created by interpolating the three key
deformations nearest to the camera viewpoint.

Bottom row: The interpolated 3D model seen
from a fixed, independent viewpoint. We
clearly see the model distorting as the top row’s
viewpoint changes

surface, Cbase is the base color of the surface (e.g., the diffuse
color), and Ccool and Cwarm are cool and warm colors (e.g., blue
and orange). The parameter ka controls how much of the base
color the surface receives as ambient light (the given examples
use ka = .9). The parameters k1 and k3 are used to prevent the
lights from oversaturating the surface (since it has a strong
ambient component), and k2 and k4 control the intensity of the
warm and cool lights. A value of 1.0 can be used as a default for
k1 through k4.

In contrast with the Gooch method, the values of k1 through
k4 are varied for each surface, based on the hue of Cbase. For
example, we disable the warm (orange) light when rendering
white-ish surfaces – yielding soft, cool whites. For purple
surfaces, we set k4 to 2.0 (intensifying the cool light component),
while for red colors we increase the cool light while also
decreasing the warm light – yielding rich purples and brilliant
reds. There are many other hues that can be handled, and varying
the parameters leads to many interesting effects (e.g., letting the
parameters extend to negative values yields fluorescent surfaces).

The above equation can be implemented in OpenGL by
setting the global ambient light to Cbase * ka, setting the per-light
ambient and specular components to zero, and using the second
and third terms in the above equation as the diffuse component for
the first and second lights, respectively.

Our silhouette algorithm is based on [Rask99] (the
techniques of [Mark97] can also been applied). In the former
paper, silhouettes are generated by rendering the model in two
passes: first a regular backface-culled rendering pass, with lit and
shaded polygons, then a second pass with front faces culled and
back faces rendered in thick black wireframe (using the OpenGL
commands glDepthFunc(GL_LEQUAL),
glCullFace(GL_FRONT), and glPolygonMode(GL_BACK,

GL_LINE)). This method is easy to implement, and operates on
unstructured “polygon soup” models as well. In our
implementation, we also optimize by first detecting adjacent faces
which span a silhouette edge (that is, one face is front-facing and
the other back-facing). We then only render these faces – rather
than all the backfaces – in the second pass. In addition, we render
these faces a third time as points using glPolygonMode(

GL_BACK, GL_POINT), to eliminate cracks that can appear
between adjacent thickened edges.

3.2.5 Example View-Dependent Model

In Figure 6 we show a static view-dependent model, rendered
from a series of viewpoints. This model was created by applying
the three deformations shown in Figure 1, along with 5 other
minor deformations about the viewing sphere. As we rotate
around the head, we see the ears and hair shift to match the
original drawings (from Figure 1). In the bottom row (in blue) we
show the model from an independent, fixed viewpoint. This
clearly shows the 3D changes in the model as the camera rotates.

3.3 Unspecified Regions in Viewing Sphere
Our method has assumed that the key viewpoints entirely

surround the base object. Then there will always be three key
viewpoints surrounding any arbitrary new viewpoint. However, if
the hull of the key viewpoints does not enclose the center of the
viewing sphere, then there will be areas on the sphere that have no
associated key deformations. This may happen, for example, if
there are fewer than four deformations, or if the key viewpoints all
lie on one side of the object.

We can deal with these unspecified regions by interpolating
the deformations with the original base model. For example, if
the key viewpoints all lie on one side of the sphere, we can insert
dummy “deformations” – simply copies of the base model – in
order to fully enclose it. Equivalently, we can revert to the base
model without explicitly inserting dummy keys by using a cosine
or cosine-squared falloff on the available deformations as the
current viewpoint moves into unspecified regions.

For example, in Figure 7 we show a building model, to be
used as a background object. Since backgrounds are often only
seen from a single viewpoint, we only apply one deformation
(from the front of the building). As the current camera moves
away from the front, we gradually revert to the base model by
blending the single deformation and the base model with:

()()
()() base_model*

odeldeformed_m* new_model

eyekey

eyekey

VV

VV
ˆˆ1,0max

ˆˆ,0max

•−+
•=

where Vkey is the view vector for the single key deformation, and
Veye is the view vector for the current eye point. This formula
blends smoothly between the single deformation and the base
model as the viewpoint changes.

4 ANIMATED VIEW-DEPENDENT
MODELS
The basic view-dependent method described above only

handles static base models. This can be useful for background
objects, props, vehicles, etc. In this section, we demonstrate how
to deal with objects whose shape changes non-rigidly over time.

We note that if the animation will be used for only a single
shot, or if the camera path for the final render is fixed, then it may
be easier to match the animation and artwork directly using
conventional keyframe methods. However, if we have an
animation that will be used repeatedly from arbitrary angles (e.g.,
a walking cycle), in large numbers (e.g., crowds), or from an
unknown camera path (e.g., a real-time application), then it may
be more efficient to use view-dependent geometry. The animation
can then be rendered from any arbitrary viewpoint, automatically
yielding the proper distortions.

Figure 7 The base model in this example is a
simple rectangular building. We applied a
single deformation, from a viewpoint directly
facing the building. The output model is
fully deformed when the current camera faces
the building front, and reverts to the original
shape as the camera moves towards the sides.

4.1 Animated Base Models
A set of key deformations indicates what an object should

look like from various viewpoints, but does not show change over
time. When the base model is non-rigidly animated, then a single
set of deformations no longer suffices. Instead, we will need a
different set of deformations for each frame of the model’s
animation, which are then blended on a per-frame basis in
response to the current viewpoint.

However, the user does not have to explicitly specify the set
of key deformations for every frame – a tedious and error-prone
task. Instead, the user only needs to define a small number of
deformations, at different times in the animation and from various
viewpoints (Figure 8). All the deformations from the same
viewpoint are then interpolated over time (discussed in the next
section). This yields, for each viewpoint on the viewing sphere, a
deformation at every frame. Once this interpolation is applied for
all key viewpoints, we will have a full set of deformations for
each frame. We can then directly apply the basic view-dependent
geometry method on a per-frame basis.

4.2 Interpolating the Key Deformations
Over Time
Let us consider a single key viewpoint. We need a

deformation of the base model from this viewpoint for every
frame in the animation, but are given only a small number of them
at selected frames. Because the deformations are given sparsely
and do not necessarily correspond to the underlying animation
keyframes, we cannot interpolate between them directly (doing so
would lead to the typical problems of object blending discussed in
[Beie92, Leri95, Witk95, Sede93]).

Instead of interpolating directly, we propagate the
deformations throughout the underlying animation by factoring
out the deformation offsets at the given frames, interpolating
between these offsets, then adding the interpolated deformation
offsets to the original animated model. This preserves the
underlying motion while propagating the changes due to
deformation.

For example, let v be a vertex in an animated base model,
with deformations at two given frames. We denote v’s original
3D location at the first given frame as va, and its original position
at the next keyframe as vb. We denote the deformed vertex
locations at those two frames as va’ and vb’ . Instead of
interpolating directly from va’ to vb’, we decompose the 3D
locations into:

aaa ovv +=,

bbb ovv +=,

where oa and ob are the offsets (3D vectors) by which the vertices
are deformed in each given frame. We then interpolate the offsets
(the current implementation uses natural cubic splines), and add
each new offset vector oi (at frame i, between the two keyframes)
to the undeformed vertex vi, yielding the final interpolated vertex
position.

4.3 Example Animated View-Dependent
Model
Figures 9-12 show an animated base model of a 40-frame

walk cycle. We applied a total of 4 key deformations to the
original walking model: one from the front and one from the side
at frame 10, and another two from the front and side at frame 30
(these deformations simply exaggerate the pose of the model,

Interpolate in time (preprocess)

Blend as
view-

dependent
geometry
based on

current
camera

viewpoint
(run-time)

Figure 8 A set of drawings showing the object at different frames,
from different viewpoints. We interpolate across time (horizontally)
to generate deformations for each frame. We blend between different
deformations at a given frame (vertically) to render from an arbitrary
viewpoint.

Figure 9 Two different deformations applied to an
animated model. On the left is the base model, on the
right is the deformed version.

Figure 10 This sequence shows different views of the animated model, at a single moment in the model’s
animation (time is not changing, only the viewpoint). The object’s shape varies depending on the
viewpoint. Top row: view-dependent model as seen from the main (rotating) camera. Bottom row:
model as seen from independent, fixed camera. The bottom row clearly shows the distortions in the arms
and legs as the camera rotates.

making the arms and legs swing out more). We therefore have 2
key viewpoints (a front view and a side view), and two
deformations in time per viewpoint (the two deformations at
frame 10 are shown in Figure 9). These deformations are first
offset-interpolated in time as a preprocess, yielding deformations
at every frame, for each key viewpoint. These key deformations
are then blended at run-time using the view-dependent geometry
method. In Figure 10 we show a single frame of the walk cycle,
seen from various viewpoints around the model. The blue model
(seen from a fixed, independent viewpoint) shows how the object
distorts as we view it from different angles. Figure 11 and 12
compare the original model against the view-dependent model as
they are animated over time. Figure 11 is the original model,
without view-specific distortions. Figure 12 shows the view-
dependent model, clearly showing the effects of the distortions.

5 PUTTING IT ALL TOGETHER
In Figure 13 we bring together the different methods

discussed in this paper. The rabbit’s head is a static view-
dependent model, the body is an animated view-dependent model,
and the buildings are static view-dependent models with a single
deformation applied. We can see the ears differ in the first and
last viewpoints. We also see the distortions of Figure 9 in the
middle two viewpoints. Finally, we see the buildings are distorted
when seen face-on, but otherwise revert to their original
rectangular shape.

6 FUTURE WORK
Both the current implementation and the general method of

view-dependent geometry are open to many avenues of further
investigation:

• Semi-automatic alignment and deformation based on feature
correspondence. For example, one might adapt standard
image morphing techniques such as [Beie92].

• Automatic construction of the 3D base model from the 2D
drawings.

• Better deformations might be achieved by applying higher-
order interpolation, and by ensuring vertices do not pass

through the mesh as it is deformed.
• Texture extraction – It is straightforward to extract texture
coordinates from each reference drawing, and then use view-
dependent textures [Debe98]. However, drawings are difficult
to blend due to contour lines and differences in the shading,
line style or coloring of each drawing.

• Key viewpoints at different distances. Instead of a
triangulation of the viewing sphere, a tetrahedralization of
space would be required.

• Interface tools and model formats – The current
implementation could be greatly enhanced by refining the
selection tools, the deformation methods, and by operating on
NURBS and other curved surfaces.

7 CONCLUSION
It is an established fact in computer graphics that the camera

viewpoint plays an important role in determining the appearance
of an object. From Phong shading to microfaceted reflections to
view-dependent texture mapping, graphics research has shown
that gaze direction is an important parameter in rendering objects.
Our work extends this progression by modifying the actual shape
of an object depending on where it is viewed from. In doing so,
we directly address a problem in 3D-enhanced cel animation – the
loss of view-specific distortions as an object moves from the
artistic 2D world to the geometric 3D world. By employing view-
dependent geometry in cartoon animation, we can render 3D
models that are truer in shape to their original 2D counterparts.

ACKNOWLEDGEMENTS
The author would like to thank Gary Bishop, Susan Thayer,

Nick England, Mark Mine, Michael Goslin, Gary Daines, and
Matt Cutts for helpful discussions throughout the progress of this
work, the reviewers for their feedback, and Todd Gaul for video
editing assistance. This project was funded by DARPA ITO
contract number E278, NSF MIP-9612643, DARPA ETO contract
number N00019-97-C-2013, and an NSF Graduate Fellowship.
Thanks also to Intel for their generous donation of equipment.

Figure 11 The base (undeformed) model animated over time, viewed by a rotating camera. At each frame, both the base
model and the viewpoint changes. Since this is a conventional animated model, there are no viewpoint-specific distortions.

Figure 12 The view-dependent model animated over time, viewed by a rotating camera. The animated model’s shape changes based on
the viewpoint. The distortions of Figure 9 are seen in the 2nd and 7th frames – all other frames use offset-interpolated deformations.

REFERENCES
[Beie92] Thaddeus Beier and Shawn Neely. Feature-Based Image

Metamorphosis. In Proceedings of SIGGRAPH 92, pages 35-
42. New York, July 1992. ACM.

[Blai94] Preston Blair. Cartoon Animation. Walter Foster Publishing,
Laguna Hills, California, 1994.

[Corr98] Wagner Toledo Correa, Robert Jensen, Craig Thayer, and
Adam Finkelstein. Texture Mapping for Cel Animation. In
Proceedings of SIGGRAPH 98, pages 435-446. New York,
July 1998. ACM.

[Debe98] Paul Debevec, George Borshukov, and Yizhou Yu. Efficient
View-Dependent Image-Based Rendering with Projective
Texture-Mapping. In 9th Eurographics Rendering Workshop,
Vienna, Austria, June 1998

[Dura91] Charles Durand. The “Toon” Project: Requirements for a
Computerized 2D Animation System. In Computers and
Graphics 15 (2), pages 285-293. 1991.

[Faug93] Olivier Faugeras. Three-Dimensional Computer Vision: A
Geometric Approach. MIT Press, Cambridge, Massachusetts,
1993.

[Feke95] Jean-Daniel Fekete, Erick Bizouarn, Eric Cournarie, Thierry
Galas, and Frederic Taillefer. TicTacToon: A Paperless
System for Professional 2D Animation. In Proceedings of
SIGGRAPH 1995, pages 79-90. July 1995. ACM.

[Gooc98] Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen. A
Non-Photorealistic Lighting Model for Automatic Technical
Illustration. In Proceedings of SIGGRAPH 98, pages 447-452.
New York, July 1998, ACM.

[Guag98] Eric Guaglione, Marty Altman, Kathy Barshatzky, Rob
Bekuhrs, Barry Cook, Mary Ann Pigora, Tony Plett, and Ric
Sluiter. The Art of Disney’s Mulan. In SIGGRAPH 98 Course
Notes #39. New York, July 1998. ACM.

[Hack77] Ronald Hackathorn. Anima II: a 3-D Color Animation System.
In Proceedings of SIGGRAPH 77, pages 54-64. New York,
1977. ACM.

[Lass87] John Lasseter. Principles of Traditional Animation Applied to
3D Computer Animation. In Proceedings of SIGGRAPH 87,
pages 35-44. New York, July 1987. ACM.

[Lee95] Seung-Yong Lee, Kyung-Yong Chwa, Sung Yong Shin, and
George Wolberg. Image Metamorphosis Using Snakes and
Free-Form Deformations. In Proceedings of SIGGRAPH 95,
pages 439-448. New York, July 1995. ACM.

[Leri95] Apostolos Lerios, Chase Garfinkle, and Marc Levoy. Feature-
Based Volume Metamorphosis. In Proceedings of SIGGRAPH
95, pages 449-456. July 1995. ACM.

[Levo77] Marc Levoy. A Color Animation System Based on the
Multiplane. In Computer Graphics, vol. 11, pages 65-71. New
York, July 1977.

[Libr92] Stephen Librande. Example-Based Character Drawing. M.S.
Thesis, MIT. September 1992.

[Litw91] Peter Litwinowicz. Inkwell: A 2½-D Animation System. In
Proceedings of SIGGRAPH 91, pages 113-122. New York,
July 1991. ACM.

[Mark97] Lee Markosian, Michael Kowalski, Samuel Trychin, Lubomir
Bourdev, Daniel Goldstein, and John Hughes. Real-Time
Nonphotorealistic Rendering. In Proceedings of SIGGRAPH
97, pages 415-420. July 1997. ACM.

[Pfit94] Gary Pfitzer. Wildebeests on the Run. In Computer Graphics
World, pages 52-54. July 1994.

[Rask99] Ramesh Raskar and Michael Cohen. Image Precision
Silhouette Edges. To appear in Proceedings of Interactive 3D
Graphics 99.

[Reev81] W. T. Reeves. Inbetweening For Computer Animation
Utilizing Moving Point Constraints. In Proceedings of
SIGGRAPH 81, pages 263-269. July 1981. ACM.

[Robe94a] Barbara Robertson. Disney Lets the CAPS Out of the Bag. In
Computer Graphics World, pages 58-64. July 1994.

[Robe94b] Barbara Robertson. Digital Toons. In Computer Graphics
World, pages 40-46. June 1994.

[Sede86] Thomas Sederberg and Scott Parry. Free-Form Deformation of
Solid Geometric Models. In Proceedings of SIGGRAPH 86,
pages 151-160. New York, Aug 1986. ACM.

[Sede93] Thomas Sederberg, Peisheng Gao, Guojin Wang, and Hong
Mu. 2-D Shape Blending: An Intrinsic Solution to the Vertex
Path Problem. In Proceedings of SIGGRAPH 93, pages 15-18.
New York, July 1993. ACM.

[Sing98] Karan Singh and Eugene Fiume. Wires: A Geometric
Deformation Technique. In Proceedings of SIGGRAPH 98,
pages 405-414. New York, July 1998. ACM.

[Wats81] David Watson. Computing the N-Dimensional Delaunay
Tessellation With Application to Voronoi Polytopes. In The
Computer J., 24(2), p. 167-172. 1981.

[Witk95] Andrew Witkin and Zoran Popovic. Motion Warping. In
Proceedings of SIGGRAPH 95, pages 105-108. New York,
July 1995. ACM.

[Wood97] Daniel Wood, Adam Finkelstein, John Hughes, Craig Thayer,
and David Salesin. Multiperspective Panoramas for Cel
Animation. In Proceedings of SIGGRAPH 97, pages 243-250.
New York, July 1997. ACM.

[Zori95] Denis Zorin and Alan Barr. Correction of Geometric
Perceptual Distortions in Pictures. In Proceedings of
SIGGRAPH 95, pages 257-264. July 1995. ACM.

Figure 13 We combine the various techniques into one scene. The rabbit’s head is a static view-dependent model. Note the different tilt of the ears between
the first and last viewpoints. The body is an animated view-dependent model. It incorporates the view-specific distortions of Figure 9. The background

buildings are view-dependent models with a single key deformation. They distort when seen front-on, and appear rectangular as the viewing angle increases.

