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Abstract

We introduce a new concept for accelerating realistic image synthe-
sis algorithms. At the core of this procedure is a novelphysicalerror
metric that correctly predicts theperceptualthreshold for detecting
artifacts in scene features. Built into this metric is a computational
model of the human visual system’s loss of sensitivity at high back-
ground illumination levels, high spatial frequencies, and high con-
trast levels (visual masking). An important feature of our model is
that it handles the luminance-dependent processing and spatially-
dependent processing independently. This allows us toprecompute
the expensive spatially-dependent component, making our model
extremely efficient.

We illustrate the utility of our procedure with global illumina-
tion algorithms used for realistic image synthesis. The expense
of global illumination computations is many orders of magnitude
higher than the expense of direct illumination computations and
can greatly benefit by applying our perceptually based technique.
Results show our method preserves visual quality while achieving
significant computational gains in areas of images with high fre-
quency texture patterns, geometric details, and lighting variations.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism.

Keywords: Realistic Image Synthesis, Global Illumination, Adap-
tive Sampling, Perception, Visual Masking, Error Metric, Visual
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1 INTRODUCTION

Realistic Image Synthesisis an important area of research in com-
puter graphics and has been widely studied in the last few decades.
It aims at producing synthetic images that are visually indistin-
guishable from the actual scene it seeks to reproduce. Earlier work
attempted to simulate this realism by modeling only the direct il-
lumination of the scene by light sources, but this approach failed
to capture many important visual cues: indirect illumination, soft
shadows, color bleeding, and caustics.Global Illuminationalgo-
rithms developed in recent years have been able to accurately render
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these effects in addition to the direct illumination [12]. These algo-
rithms physically simulate accurate light reflection and the complex
light interactions between surfaces in the environment. Unfortu-
nately, these simulations make global illumination algorithms com-
putationally very expensive, with execution times many orders of
magnitude slower than simple direct illumination algorithms. The
research described in this paper is focused on improving the effi-
ciency of computing global illumination.

Perceptually based techniquespromise dramatic performance
gains. As the final result of a global illumination algorithm is an
image interpreted by the human eye, it is sufficient to aim for per-
ceptual accuracy. Due to the limitations of the human visual sys-
tem, the degree of effort required to attain acceptable perceptual
accuracy varies over the image. Perceptually based rendering algo-
rithms take advantage of this phenomenon and attempt to expend
only “just-necessary” effort over the image to meet this perceptual
accuracy criteria. To accomplish this a computational model of the
visual system [7, 17, 21] is necessary. Such vision models typically
predict the visual sensitivity variations with background illumina-
tion levels, spatial frequency, and scene contrast features. These
predictions can then be used to make image quality judgements.
The vision model is applied as the image is being generated and
additional efforts are then expended only in areas with detectable
visual artifacts, thereby reducing the overall computation time.

Vision models are normally expensive to evaluate as some of
their components perform multiscale spatial processing. Moreover,
in a progressive image synthesis algorithm, image quality judge-
ments are required at every iteration and the vision model is in-
voked many times. Hence, although perceptually based algorithms
show significant potential for acceleration, they also involve con-
siderable amount of additional overhead due to the repeated vision
model evaluation.

In this paper we introduce a new framework for perceptually
based rendering that drastically reduces the overhead of incorpo-
rating a perceptual basis.We develop a threshold model which de-
fines a physical error metric that correctly predicts the perceptual
threshold for detecting artifacts in scene features. This allows im-
age quality judgements to be made in the physical domain using the
perceptually based physical error metric.This framework opens
new avenues for using a perceptual basis in speeding up global il-
lumination computations.

A key ingredient for realism in synthesized images iscomplex-
ity [5]. Realistic images tend to be richly detailed. This richness and
detail take many forms, such as texture patterns, geometric details,
and lighting variations, and contain high spatial frequency content.
But since the visual system’s threshold and suprathreshold sensi-
tivity to high spatial frequency content is poor [10], more artifacts
can be tolerated in these areas. Our framework takes advantage of
these phenomena to reduce global illumination computation time.
The texture patterns and geometric detail are inherent in the scene
specification and can be captured during direct illumination compu-
tation. Direct illumination algorithms also capture most of the high
spatial frequency of the image due to lighting variations. From this
solution, we “precompute” the spatially-dependent component of
our threshold model before the indirect illumination computation
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(a) reference global illumination solution (b) sample density pattern (c) adaptive global illumination solution

Figure 1: An illustration of our framework applied to an adaptive global illumination algorithm. Image (b) is the sample density pattern
used for the indirect illumination computation (darker areas indicate fewer samples), and image (c) is the final solution resulting from the
adaptive global illumination computation. For comparison, image(a) is a reference global illumination solution generated using uniformly
high sampling density. While it may seem counterintuitive, areas with higher spatial frequency content require less computational effort.

stage and thus avoid recomputing this complex component over
subsequent iterations. As computing this component of the thresh-
old model involves the expensive multiscale spatial processing, we
benefit enormously by this precomputation. Figure 1 illustrates the
sampling density pattern when our threshold model is used to direct
the sampling in an adaptive global illumination algorithm. Notice
that the sampling density reflects the psychophysical observation
that our visual system is less sensitive in areas with higher spatial
frequency content.

The remainder of this paper is organized as follows: Section 2
reviews the previous approaches to perceptually based rendering.
In Section 3 we introduce our new framework. At the core of
this framework is thethreshold modelwhich defines a perceptually
based physical error metric. The perceptual basis and implemen-
tation of this model are described in Section 4. In Section 5 we
illustrate the utility of our framework by applying it to an adaptive
global illumination algorithm. We conclude the paper with a sum-
mary of our framework and the future directions for this research.

2 PREVIOUS WORK

Many researchers have attempted to develop perceptually based
rendering algorithms. Bolin and Meyer [3] present an excellent
survey of the early algorithms. Our discussion concentrates on the
algorithms most relevant to our work.

All of these algorithms attempt to exploit the limitations of the
human visual system to speed up rendering computations without
sacrificing visual quality. They differ in the extent to which they
model the visual system and the way they apply this vision model
to the rendering algorithms. Mitchell [19] defined an adaptive sam-
pling strategy for his ray tracing algorithm by taking advantage of
the poor sensitivity of the visual system to high spatial frequency,
to absolute physical error (threshold sensitivity), and to the high
and low wavelength content of the scene. Meyer and Liu [18] took
into account the human visual system’s poor color spatial acuity
in developing an adaptive image synthesis algorithm. Bolin and
Meyer [2] developed a frequency based ray tracer using a simple
vision model which incorporated the visual system’s spatial pro-
cessing behavior and sensitivity change as a function of luminance.
Myszkowski [20] and Bolin and Meyer [3] applied sophisticated
vision models to guide Monte Carlo based ray tracing algorithms.
The models they used incorporated the visual system’s threshold
sensitivity, spatial frequency sensitivity, and contrast masking be-

havior. Gibson and Hubbold [11] and Hedleyet al. [14] have ap-
plied the threshold sensitivity of the visual system to speed up ra-
diosity computations.

Of all the approaches described above, the recent work by
Myszkowski [20] and Bolin and Meyer [3] needs special mention
for two reasons. First, they used sophisticated vision models which
incorporate the most recent advances in the understanding of the
human visual system [7, 17]. Thus in principle their algorithms can
take maximum advantage of the limitations of the visual system.
Second, they introduced a perceptual error metric into their render-
ing algorithms. Thus their algorithms were able to adaptively allo-
cate additional computational effort to areas where errors remained
above perceivable thresholds and stop computation elsewhere.

Both approaches were conceptually similar and used avisual dif-
ference predictor[7, 17] to define a perceptual error metric. A
visual difference predictor takes a pair of images and transforms
them to multidimensional visual representations by applying a vi-
sion model. It then computes the “distance” between this pair of
visual representations in a multidimensional space, producing the
form of a local visual difference map. This is compared against a
perceptual threshold value to ascertain the “perceivability” of the
difference. Figure 2 illustrates the functioning of such a predictor.

When one of the two input images to the predictor is the final
converged image and the other is the image at any intermediate
stage of computation, then the visual difference map becomes an
error estimate for that stage and the visual difference predictor func-
tions as an estimator of the perceived error. Myszkowski, and Bolin
and Meyer used such an estimator during their image computation
and used this information to direct subsequent computational ef-
fort. Unfortunately, during the image synthesis process one does
not have the luxury of accessing the final converged image at an in-
termediate stage. Myszkowski assumed that two intermediate im-
ages obtained at consecutive time steps of computation could be
used as input to the visual difference predictor to get a functional
error estimate. Bolin and Meyer computed the upper and lower
bound images from the computation results at intermediate stages
and applied the predictor to get the error estimate for that stage.
Their approach thus estimates the error bounds.

These algorithms achieve the ability to focus computational ef-
forts in areas with perceivable errors, but only at considerable cost.
They use the perceptual error metric at every stage of image com-
putation which requires repeated evaluation of the embedded vision
model. The vision model is very expensive to compute as some of
its components require multiscale spatial processing, and this over-
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Figure 2: Conceptual difference between a perceptually based
physical error metric and a perceptual error metric. A perceptual
metric operates in the perceptual domain. Images to be compared
are first transformed into their multi-scale visual representation and
the perceptual metric is applied to the difference of the visual repre-
sentation (b). In contrast, a perceptually based physical error metric
operates in the physical domain. The metric is applied to the phys-
ical luminance difference between the images (a). Our metric is
non-uniform over the physical space of the image.

head offsets some of the advantages gained by using the perceptual
error metric to speed up the rendering algorithm.

3 NEW FRAMEWORK

We propose a new framework for perceptually based rendering
which drastically reduces the overhead of introducing the percep-
tual basis while still gaining maximum advantage from the limita-
tions of the human visual system. To achieve this we first develop
a threshold modelwhich incorporates the human visual system’s
threshold sensitivity, spatial frequency sensitivity, and contrast sen-
sitivity (masking) to predict the perceptual threshold for detecting
artifacts in scene features. The threshold modelT operates on an
imageI to generate athreshold mapT (I) which is an index to
the maximum physical luminance error that can be tolerated at any
location on the image, while preserving visual quality.

We call our framework aperceptually based physical error met-
ric to emphasize the fact that once the threshold map is computed,
the pair of images can be compared directly in the physical lumi-
nance domain, while still accounting for the limitations of the visual
system. Figure 2 illustrates the conceptual difference between the
perceptual error metric and our perceptually based physical error
metric. A major advantage of our approach is that we can precom-
pute the expensive components of our threshold model at an earlier
rendering computation stage and thus avoiding the recomputation
that has hindered earlier approaches.

4 THRESHOLD MODEL

In this section we develop a model for computing a threshold map
for any given image. The threshold map predicts the maximum lu-
minance error that can be tolerated at every location over the im-
age. This model makes use of three main characteristics of the
visual system, namely: threshold sensitivity, contrast sensitivity,
and contrast masking. An important feature of this model is that

it handles the luminance-dependent processing and the spatially-
dependent processing independently. The luminance-dependent
processing computes a starting threshold map�Ltvi for the lumi-
nance distribution using thethreshold-vs-intensity(TVI) function.
The spatially-dependent processing computes a map containing el-
evation factorsFspatial for the spatial pattern using thecontrast
sensitivity function(CSF) andmasking function. From these two
we derive the final threshold map�LT (x; y) as:

�LT (x; y) = �Ltvi(x; y)� Fspatial(x; y) (1)

The separate handling of luminance distributions and spatial pat-
terns allows us to precompute the expensive spatially-dependent
component of the threshold model, making our model extremely ef-
ficient when used in perceptually-based rendering algorithms. Fig-
ure 3 provides an overview of the model.

4.1 Model Description

Threshold Sensitivity The threshold-vs-intensity(TVI)
function describes the threshold sensitivity of the visual system as
a function of background luminance. The threshold, as defined by
this function, is the minimum amount of incremental luminance,
�L, by which a test spot should differ from a uniform background
of luminanceL to be detectable. Figure 3(b) plots thresholds com-
puted from this function at different background luminance values.
The two curves in the figure represent the thresholds of the rod
and cone systems. The linear part of each curve follows Weber’s
law, which means that the threshold increases linearly with lumi-
nance. The threshold from this TVI function,�Ltvi, provides the
luminance-dependent starting values from which we build our final
threshold map.

Contrast Sensitivity The threshold given by the TVI func-
tion predicts sensitivity in uniform visual fields. However, the lumi-
nance distribution in any complex image is far from uniform. The
contrast sensitivity function(CSF) [21] provides us with a better
understanding of the visual sensitivity in such situations. The sen-
sitivity is highest at frequencies in the range of 2 to 4 cycles per
degree (cpd) of visual angle and drops off significantly at higher
and lower spatial frequencies. The peak sensitivity is normally pre-
dicted by the TVI function. What the TVI function does not predict
is the loss of sensitivity as the frequency deviates from this range.
The relation between contrast sensitivity,Scsf , and visual thresh-
old,�Lcsf , at any frequencyf is derived as:

Scsf (f) =
1

�Ccsf(f)
=

1

(�Lcsf (f)=L)
(2)

where�Ccsf is the threshold contrast, andL is the background
luminance. From this we get:

�Lcsf (f) =
L

Scsf(f)
(3)

Thus, the CSF function gives us the threshold�Lcsf (f) for de-
tecting a sinusoidal grating pattern of any given frequency from a
background luminanceL. The threshold predicted by CSF for a
grating is conceptually different from the threshold from TVI func-
tion. The difference lies in the fact that the threshold itself is a
pattern of the same frequency with a peak value of�Lcsf (f) and
defined around a mean value of zero1.

1This difference derives from the fact that in psychophysics two types
of contrast definitions are used: Weber contrast is used in experiments with
aperiodic signals (spot on background tests), which is �L

Lbackground
and

Michaelson contrast is used in experiments with periodic signals (tests with

sinusoidal gratings) which isLmax�Lmin
Lmax+Lmin

=

�Lpeak
Lmean

�
�Lpeak

Lbackground
.
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Figure 3: Flow chart outlining the computational steps of our threshold model.

As the sensitivity decreases for frequencies outside the range of 2
to 4 cpd, this�Lcsf increases. We write this increase in threshold
for any frequencyf , as compared to the threshold at peak of the
CSF function as:

Fcsf(f) =
�Lcsf (f)

�Lpeak
csf

(4)

We refer to this relative increase as thethreshold elevation factor
due to contrast sensitivity,Fcsf (f). Figure 3(c) plots this elevation
factor as a solid line. The peak contrast sensitivity is normally pre-
dicted by the TVI function i.e.�Lpeak

csf = �Ltvi. Thus from the
TVI andFcsf functions we can compute the threshold for patterns
at any frequencyf as:

�Lcsf (f) = �Ltvi � Fcsf(f) (5)

where�Ltvi is the threshold for the background luminanceL of
the frequency pattern.

Multi-scale Spatial Processing The CSF behavior of the
visual system is believed to be the result of the spatial processing
of the frequency patterns by multiple bandpass mechanisms. Each
mechanism processes only a small band of spatial frequencies from
the range over which the visual system is sensitive. The inverse of
the response curves of these bandpass mechanisms normalized with
respect to the peak CSF value are shown by the curves drawn in
broken lines in Figure 3(c). As can be inferred from the figure, the
peak sensitivity of each mechanism is equal to the CSF sensitivity
at their peak frequencies.

Most of the frequencies in the range over which the visual system
is sensitive are processed by multiple bandpass mechanisms. We
can describe the contribution of each mechanism to the threshold
elevation factor for a grating of frequencyf as:

F i
csf (f) = Fcsf (f

i
peak)� fractioni(f) (6)

fractioni(f) =
Ci(f)P
i C

i(f)
(7)

wheref ipeak is the peak frequency of theith bandpass mechanism,
andCi is the band-limited contrast of the grating pattern at theith

bandpass mechanism.
The elevation factor for the grating of frequencyf due to all the

bands is then given by:

Fcsf (f) =
X

i

F i
csf (f)

=
X

i

�
Fcsf(f

i
peak)� fractioni(f)

� (8)

Similar summation techniques are used to compute the distance in
multi-dimensional perceptual space [7, 17]. Equation 4 and Equa-
tion 8 are two different representations of the elevation function
for a sinusoidal grating of frequencyf . Equation 8 is more useful
for deriving elevation from complex patterns. Any complex pattern
can be represented as a sum of sinusoidal grating patterns of vari-
ous wavelength, amplitude, orientation and phase. We can use the
same summation technique given in the above equation to compute
the elevation factor map for complex patterns. However, to account
for the complexity of the patterns we redefine Equation 7 as:

fractioni(x; y) =
Ci(x; y)P
i C

i(x; y)
(9)

whereCi(x; y) is the band-limited Weber contrast of the complex
pattern at theith bandpass mechanism at every point(x; y) of the
pattern. (Computation of this band-limited Weber contrast is de-
scribed in the next section.) Consequently, the elevation factor in
Equation 8 for complex patterns becomes an elevation factor map
Fcsf(x; y) which is given by:

Fcsf (x; y) =
X

i

(F i
csf (x; y))

=
X

i

Fcsf (f
i
peak)� fractioni(x; y)

(10)



(a) test image (b) noise map (c) test image + noise map

Figure 4: Testing the threshold model. Our threshold model computes a threshold map, shown in Figure 3(g) for the test image shown in (a).
The threshold map is used to create a noise map. The absolute luminance value at every pixel in the noise map is below the threshold value
given for that pixel in the threshold map. Image (b) shows the “absolute values” of this noise map. Image (c) is obtained by adding this noise
to the test image. This image, though now containing noise, is visually indistinguishable from the original test image.

Contrast Masking The multiple bandpass mechanisms of
the visual system are known to have non-linear response to pattern
contrast. This compressive non-linearity results in further elevation
of threshold with increases in the contrast of the pattern. Such be-
havior of the visual system is known as visual masking [10]. The
elevation of threshold as a function of contrast is shown in Fig-
ure 3(d). We combine this elevation due to masking with the el-
evation due to CSF to compute a cumulative elevation factor map
as:

Fspatial(x; y) =
X

i

�
Fcsf(f

i
peak)� F i

masking(x; y)

� fractioni(x; y)
� (11)

whereFcsf (f ipeak) is the elevation factor due to contrast sensitivity,
andF i

masking(x; y) is the elevation factor due to masking which is
computed for the band-limited contrast at location(x; y) for theith

band.
From the elevation factor derived in Equation 11 and the�Ltvi

derived from the TVI function, our model computes a threshold
map for any complex image patterns as given by Equation 1.

4.2 Implementation

In this section we describe the specific computational procedures
that were used to implement each of the components of the model.
Input to the model is a luminance image and output is the threshold
map containing the threshold luminance values incd=m2. We use
the scene luminance image as input to the threshold model with
the assumption that whatever tone reproduction operator is used to
display the final image will preserve its appearance [22]. To find
the threshold map we need to evaluate Equation 1 over the image.

The first step of the model is to find the luminance-dependent
threshold (�Ltvi) from the TVI function. We employ Ward’s [16]
piecewise approximation of the TVI curves given by Ferwerdaet
al. [9]. Computation of�Ltvi(x; y) at a pixel using this function
requires the adaptation luminance at that pixel. Following the pro-
cedure adopted by Wardet al. [16] we computed the adaptation lu-
minance by averaging the luminance over a1� diameter solid angle
centered around the pixel.

The next step is to evaluate the cumulative elevation factor
Fspatial given in Equation 11. The terms in this equation require

spatial decomposition of the image to “band-limited contrast re-
sponses”. We use Lubin’s approach [17] for this spatial decompo-
sition. First, the image is decomposed into a Laplacian pyramid
(Burt and Adelson [4]), resulting in six bandpass levels with peak
frequencies at 1, 2, 4, 8, 16, and 32 cycles/degree (cpd). Then, a
contrast pyramidis created by dividing the Laplacian value at each
point in each level by the corresponding point upsampled from the
Gaussian pyramid level two levels down in resolution. The result-
ing contrast measure in the bands is equivalent to theband-limited
Weber contrast[17] referred to in Equation 9.

The first term in Equation 11 is the band-limited peak elevation
factorFcsf . This factor is derived from Barten’s CSF formula [1]:

Scsf (f; L) = af exp(�bf)
p
1 + 0:06 exp(bf) (12)

where Scsf = contrast sensitivity

a = 440(1 + 0:7=L)�0:2

b = 0:3(1 + 100=L)0:15

L = display luminance incd=m2

f = spatial frequency in cycles per degree (cpd)

We use the normalized CSF curve at 100cd=m2. Measurements
by van Nes [25] show that the CSF is relatively independent of
luminance level for levels above 100cd=m2, so the shape of the
CSF curve at 100cd=m2 is a good match for higher luminance
levels. At lower levels of illumination there is a proportionate de-
crease in sensitivity. However, the relative falloff in sensitivity at
low spatial frequencies, as normally observed in a CSF curve, re-
duces with lowering of illumination level. To avoid any overes-
timation of threshold at lower frequencies we set the normalized
CSF sensitivity factor below 4 cpd to be one. The reciprocal of the
normalized CSF sensitivity values gives us the threshold elevation
factors at various frequencies. The elevation factors at the discrete
frequencies from 1 through 32 cpd are:

f ipeak (cpd) 1 2 4 8 16 32
Fcsf (f

i
peak) 1.00 1.00 1.02 1.57 4.20 31.32

(13)

Next we need to evaluate the elevation factor due to masking in
the bands,F i

masking(x; y). This elevation factor is determined us-
ing a masking function. These functions are usually given as com-
pressive transducers [17] and can be converted to a threshold ele-
vation function using numerical inversion methods. In the current



(a) test scene (b) direct illumination solution (c) direct illumination solution + ambient term

Figure 5: The direct illumination solution plus an approximate ambient term capture most of the high spatial frequency and contrast content
in the scene.

implementation we have used the simpler analytic function given
by Daly [7]:

Fmasking(Cn) = (1 + (0:0153(392:498 � Cn)
0:7)4)1=4 (14)

where Fmasking = threshold elevation factor due to masking

Cn = normalized masking contrast

Before using this function the contrasts in the bands are first nor-
malized by the CSF function evaluated at luminance values from
the low pass Gaussian pyramid.

Finally, the termfractioni(x; y) is evaluated using Equation 9.
In this equation,Ci(x; y) is the band-limited Weber contrast at
point (x; y) in theith band.

The map in each band is spatially pooled by a disc-shaped kernel
of diameter 5 [17] before applying Equation 11. This is to account
for the influence of the number of cycles in the various frequencies
present in the image on the elevation functions, as suggested by
Lubin [17].

Figure 4 shows the threshold map for a test image and verifies
our claim that the threshold map is an index to the maximum phys-
ical luminance error that can be tolerated at any location on the
image.

5 APPLICATION TO GLOBAL ILLUMINA-
TION ALGORITHMS

The threshold model described in the previous section operates on
an input image to generate a threshold map which predicts the max-
imum luminance error that can be tolerated at every location over
the input image, while preserving perceived visual quality. We can
use this threshold map to predict the visible differences of another
image relative to the input image; the areas in which the luminance
difference between these images is below the threshold map are
visually indistinguishable. In a progressive global illumination al-
gorithm, we can use the threshold model to compare intermedi-
ate rendered images at two consecutive time steps to locate areas
where the global illumination solution has not perceptually con-
verged and concentrate computational effort in those areas. Com-
putation can be stopped in areas where the luminance differences
are below threshold. This perceptually based error metric could po-
tentially lead to a significant savings in computation time, but as we
saw in the previous section, the threshold model includes compo-
nents which perform multiscale processing and are quite expensive

to evaluate at each intermediate stage of a progressive algorithm.
This adds considerable additional overhead to the global illumina-
tion algorithm. However, as we shall see in the next subsection,
we exploit the representation of our threshold model and informa-
tion from an earlier stage of the global illumination, to apply the
threshold model in a global illumination framework and drastically
reduce this overhead.

5.1 Precomputing the expensive components of
the threshold model

The most expensive component in the threshold model is the pro-
cessing of the input image with band-limited multi-scale visual fil-
ters. As shown in Figure 3, this operation is required for comput-
ing the frequency-dependent elevation function and the contrast-
dependent elevation function. These functions predict the loss of
sensitivity to scene features with high spatial frequencies and high
contrast regions. If we can capture these scene features at an early
stage of global illumination computation, these two functions could
be evaluated once and reused at later stages.

Our target application provides a structure in which we can eval-
uate these functions once and re-use them to avoid repetitive model
evaluations. Global illumination computation has two major com-
ponents: direct illumination computation and indirect illumination
computation. Indirect illumination computation involves simulat-
ing complex light interactions between the surfaces in the scene
and is many orders of magnitude more expensive than direct illu-
mination computation. Fortunately, indirect illumination generally
varies only gradually over the surfaces and accounts for more sub-
tle effects. Direct illumination computation is comparatively less
expensive, but captures most of the higher spatial frequency and
contrast content in the scene, such as texture patterns, geometric
details, and shadow patterns. These two features make the direct
illumination solution a perfect candidate for use in the precompu-
tation stage. In order to ensure capturing the high spatial frequency
and contrast present in shadowed portions of the scene, we add an
approximate ambient term. This ambient term is computed in much
the same way as the ambient term in radiosity algorithms [11, 6]. As
shown in Figure 5, the direct illumination solution plus an approx-
imate ambient term capture most of the high spatial frequency and
contrast content even in scenes with large portions in shadow. This
ambient term is not included while computing global illumination
and does not affect the physical accuracy of the global illumination
solution.

The scene rendered by direct illumination plus an approximate
ambient term is used to evaluate the elevation factor map (the



shaded parts of Figure 3) in a precomputation stage prior to the
expensive indirect illumination computation. This serves two pur-
poses: the expensive components of the threshold model are evalu-
ated only once and can be reused, and the noise patterns introduced
during the indirect illumination computation do not influence the
evaluation of the elevation factor map. The indirect illumination
solution is generally “soft” and causes only gradual variation in
lighting patterns. The components we precompute only predict the
elevation factor due to high frequency content in the scene and are
not affected much by the variations in the low frequency content.
These components need not be recomputed during the indirect illu-
mination computation. However, the indirect illumination solution
does add significantly to the luminance distribution and hence we
need to recompute the luminance-dependent threshold during the
indirect illumination computation. Fortunately, evaluation of this
component of the threshold model is cheap.

5.2 An adaptive global illumination algorithm

We applied our framework to speed up a path tracing algo-
rithm [15]. Path tracing is a type of stochastic ray tracing that traces
random paths through the scene to compute the illumination value
for each pixel on the image plane. The variance for computing indi-
rect illumination is generally much higher than for computing direct
illumination, so a large number of samples have to be taken over
the image plane to obtain an acceptable estimate for the indirect
illumination component. The algorithm we implemented attempts
to reduce the number of samples required for the indirect illumina-
tion computation by adaptively refining this component using our
threshold model.

The algorithm proceeds through a few basic steps as illustrated
in the flowchart in Figure 6. First, the direct illumination solution is
computed and an approximate ambient term is added. This is used
as an input to the threshold model to generate the elevation fac-
tor map which involves precomputing the spatially-dependent func-
tions. This completes the precomputation stage. Next, the compu-
tationally expensive indirect illumination solution is progressively
computed. At every iteration, the computed indirect illumination
solution is added to the direct illumination solution to get an inter-
mediate global illumination solution. The current solution is used to
compute the luminance-dependent threshold by evaluating only the
TVI function which is not spatially-dependent and is much simpler
to compute. The precomputed elevation factor map is then used to
scale this luminance-dependent threshold to generate the threshold
map which guides the refinement. The luminance difference be-
tween the global illumination solutions at theith iteration and the
(i � 1)th iteration is compared against the threshold map evalu-
ated at the(i � 1)th stage to locate the regions where the solution
has perceptually converged. In the next iteration, the regions where
the difference remains above threshold are refined. The iteration is
continued until the difference over the entire image plane is below
the threshold map.

During each iteration the refinement can be carried out by uni-
formly distributing samples, but it is more advantageous to vary
the number of samples in a region based on its “perceptual impor-
tance”. Higher ratios between the luminance difference map and the
threshold map reflect higher perceivability of error. Alternatively,
the threshold map at the current stage can be treated as a predictor of
the perceivability of error on areas of the image plane, where lower
thresholds imply higher perceivability and indicate greater need to
sample. In our implementation we used the latter approach to deter-
mine the distribution of samples over the regions which need further
refining.
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Figure 6: Flow chart of the adaptive global illumination algorithm.

5.3 Results

The adaptive path tracing algorithm described above was applied to
several test scenes.

In Figure 7 we show some of the results on the test scene shown
in Figure 7(a). The elevation factor map is computed from Fig-
ure 7(b). This is used to evaluate the threshold map at every iter-
ation to guide the refinement of the indirect illumination solution.
Figure 7(c) is the threshold map at an intermediate iteration. Notice
that it has correctly predicted larger thresholds in areas with high
spatial frequency and contrast content, indicating the poor sensitiv-
ity of the eye in such image features. Figures 7(d-f) show the results
from the final iteration of the algorithm. The computed adaptive in-
direct illumination solution is shown in Figure 7(e) and the sample
density pattern it traced is shown in Figure 7(d). Figure 7(f) is the
final adaptive global illumination solution. Notice that because our
adaptive sampling technique uses smaller number of samples on the
areas with high frequency and contrast, the indirect illumination so-
lution for the wall painting and floor carpet shown in Figure 7(e) is
noisy. But this noise is completely masked in the final global illumi-
nation solution in Figure 7(f). This demonstrates that our threshold
model correctly predicted the loss of sensitivity in these textured
areas and that we did not have to compute a very accurate solution
in these areas. The number of samples taken over the entire image
plane required for this solution was approximately 6% of those of
the reference solution (Figure 7(a)) computed using uniform sam-
ple density, where the number of samples for each pixel is the max-
imum of all the pixels in the corresponding sampling density map.
Notice that these two solutions are visually indistinguishable. (Sub-
tle differences might be noticeable as the threshold model was cal-
ibrated to our display device, and the perceivability of differences
depends on the image reproduction method and ratio of physical
image size to observer viewing distance.)

The two test scenes in Figure 8 were selected to illustrate the
computational savings in areas of the image plane which contain
texture patterns, geometric detail, and shadow patterns with high
spatial frequency and high contrast. The two images on the right,
image (c) and image (f), are global illumination solutions obtained
using sample density patterns shown in image (b) and image (e)
respectively. In the sampling pattern shown here, lighter areas in-
dicate more samples and darker area indicate fewer samples. The
sample density patterns result from applying the threshold model



(b) direct illumination solution + ambient term (c) threshold map

(d) sample density pattern (e) adaptive indirect illumination solution (f) direct illumination solution
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Figure 7: Applying the threshold model in an adaptive global illumination algorithm.

to our adaptive path tracing algorithm. In image (b), observe that
fewer samples were taken on the texture patterns and geometric de-
tail in the scene. Image(e) shows that fewer samples were taken on
the shadow pattern on the floor. The two images on the left, im-
age (a) and image (d), are the solutions computed using uniform
sample density, where the number of samples for each pixel is the
maximum value of all the pixels in the corresponding sampling den-
sity map. Notice that the image pairs (a), (c) and (d), (f) are indis-
tinguishable even though the number of samples required by our
algorithm was approximately 5% of those of the reference solution
in the scene on the top left and approximately 10% of the reference
solution in the scene on the bottom left.

We have tested the algorithm on a number of test scenes and all
results show that we can correctly exploit the limitations of the vi-
sual system at high frequency and contrast to reduce the expensive
global illumination computations. Timing tests reveal that it has
given us great benefit at very little extra cost. This is because the
expensive components of the threshold model were evaluated only
once at a precomputation stage and reused during the rendering iter-
ations. The cost of computing the spatially-dependent component
on an image of resolution 512 by 512 is 12 seconds (or, 0.05 ms
per pixel) on a 400 MHz processor. In comparison, the luminance-
dependent component takes only 0.1 seconds (or, 0.4�s per pixel)
for the same image resolution. These figures are independent of
the specific global illumination algorithm used to generate the di-
rect and indirect illumination solutions. Comparisons with uniform
sampling methods and adaptive approaches with purely physical er-
ror metrics showed that our approach took many fewer samples for
computing images of similar visual quality.

5.4 Discussion

The adaptive technique we described above makes very few as-
sumptions about the underlying global illumination computation
algorithm. The illumination at each sample on the image plane
could be computed using most image-space global illumination al-
gorithms. We only require that the direct illumination solution be
computed first, before the indirect illumination solution. There are
many methods already developed which make direct illumination
computation very efficient [23, 8, 26, 13] and we concentrate on
speeding up the relatively expensive indirect illumination computa-
tion.

Further research is necessary to better capture details in shad-
owed areas. Using an approximate ambient term has certain draw-
backs. If the ambient term is overestimated then it affects the con-
trast in the scene and the contrast-dependent elevation function is
no longer conservative. One possible approach is to compute the
elevation factor map in shadowed areas using only the frequency-
dependent elevation function. Another approach is to use a very
small ambient term which is sufficiently conservative. The ambient
term also fails to capture the high spatial frequencies caused purely
by geometric detail in the areas under shadow. For example, in Fig-
ure 5(c) the ambient term captured the texture patterns in shadowed
areas (the carpet) but overlooked high frequencies caused purely by
geometric detail (features of the statue).

In scenes with significant specular-to-diffuse light transfers, high
frequency patterns may result at later stages of global illumination
(e.g. mirror reflections and caustics). In such cases the spatially-
dependent component of the threshold model can be recomputed
after these effects become apparent.



(a) reference global illumination solution (b) sample density pattern (c) adaptive global illumination solution

(d) reference global illumination solution (e) sample density pattern (f) adaptive global illumination solution

Figure 8: Sample density patterns and adaptive global illumination solutions for two test scenes.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have described a new framework for perceptu-
ally based image synthesis. The objective of this framework was
twofold:

� To speed up realistic image synthesis using a perceptual basis
which exploits the limitations of the human visual system, and

� To reduce the overhead (in terms of both memory and time)
of incorporating such a perceptual basis in the image synthesis
algorithm.

To achieve these objectives, we modeled the visual system as a
number of components that affect the visual threshold for detecting
artifacts depending on the image features. These components to-
gether form the threshold model which was used in our framework.
Tests on an adaptive global illumination algorithm showed that our
threshold model exploits texture patterns, geometric details, and
lighting variations in the image to enormously reduce computation
time, while preserving image fidelity. By precomputing the expen-
sive spatial components of our threshold model before the more
expensive indirect illumination computations, we nearly eliminated
all visual processing during the later iterations and also minimized
memory requirements. Incorporating the threshold model added an
overall insignificant overhead over our standard global illumination
algorithm.

In summary, we have vastly improved the computation times for
view dependent global illumination solutions using a perceptually
based physical error metric.

Through this framework, we have introduced three fundamen-
tally new concepts which have been independently tested and to-
gether hold promise for making realistic image synthesis more effi-
cient. These concepts are:

� Predicting the maximum physical luminance error that can be
tolerated at any location in an image while preserving percep-
tual quality.

� Guiding image synthesis algorithms with a perceptually based
physical error metric.

� Precomputing expensive components of the vision model es-
sential to perceptually based image synthesis algorithms.

A major goal while designing the framework presented in this
paper was to keep it sufficiently general for application to most view
dependent realistic image synthesis algorithms.

There is still much work to be done. Our threshold model does
not include color, orientation, or temporal processing. Temporal
extension to the model is particularly important and would be very
useful for dynamic image sequences such as animations or archi-
tectural walkthroughs.

Our framework is also especially suited for architectures which
switch between model-based and image-based rendering, such as
Talisman [24]. These systems render and transform objects as im-
age layers (image-based rendering) instead of re-rendering their ge-
ometry (model-based rendering). We could precompute our thresh-
old model from the scene and use it as a perceptual guide for es-
tablishing distortion criteria. This could improve performance as it
would correctly predict locally higher acceptable distortions due to
loss of visual sensitivity.
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