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Abstract

High contrast scenes are difficult to depict on low contrast dis-
plays without loss of important fine details and textures. Skilled
artists preserve these details by drawing scene contents in coarse-
to-fine order using a hierarchy of scene boundaries and shadings.
We build a similar hierarchy using multiple instances of a newlow
curvature image simplifier(LCIS), a partial differential equation
inspired by anisotropic diffusion. Each LCIS reduces the scene to
many smooth regions that are bounded by sharp gradient disconti-
nuities, and a single parameterK chosen for each LCIS controls
region size and boundary complexity. With a few chosenK values
(K1 > K2 > K3:::) LCIS makes a set of progressively simpler
images, and image differences form a hierarchy of increasingly im-
portant details, boundaries and large features.

We construct a high detail, low contrast display image from this
hierarchy by compressing only the large features, then adding back
all small details. Unlike linear filter hierarchies such as wavelets,
filter banks, or image pyramids, LCIS hierarchies do not smooth
across scene boundaries, avoiding “halo” artifacts common to pre-
vious contrast reducing methods and some tone reproduction op-
erators. We demonstrate LCIS effectiveness on several example
images.

CR Descriptors: I.3.3 [Computer Graphics]: Picture/image
generation -Display algorithms; I.4.1 [Image Processing and
Computer Vision]: Enhancement -Digitization and Image Capture

Keywords: Signal Processing, Displays, Non-Realistic Render-
ing, Level Of Detail Algorithms, Radiosity, Weird Math.

1 Introduction

Local adaptation, the ensemble of local sensitivity-adjusting pro-
cesses in the visual system, reveals visible details almost every-
where in a viewed scene. Even while driving at night, we see few
shadows that are truly featureless black. We can read the tiny let-
tering on the dazzling surface of a frosted incandescent bulb in a
desk lamp, yet we also see the dark room around us. Mechanisms
of visual appearance often cause us to underestimate large scene
contrasts. For example, we measured a piece of paper on a desk to
find it was 1,200 times brighter than the dark carpet in the foot-well
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Figure 1: This low contrast image of a streetlight on a foggy night
was made by LCIS methods from an extremely high contrast ra-
diance map [2]; Small images show the original scene radiances
scaled by progressive factors of 10. Despite scene contrasts greater
than 100,000:1, LCIS methods preserve details impossible to cap-
ture in a single photograph, including long, dramatic fog streaks,
asphalt texture, and tree details in highlight and shadow.

beneath it, yet we could easily see the fibrous textures of both si-
multaneously. Making an image such as Figure 1 that captures both
the high contrast appearance of a scene and its small low-contrast
details is contradictory and difficult, and currently the best, most
satisfying depictions of these scenes may be the creations of skilled
artists.

For three important reasons listed here, cameras and computer
graphics renderings have severe difficulties capturing, preserving,
and displaying the subtle textures and details in high contrast
scenes. First, available display contrasts are small and are easily
overwhelmed by the scene contrasts, where contrast is the ratio
between two measured light intensities. Newspaperphotographs
achieve a maximum contrast of about 30:1, typically CRT displays
offer contrasts of no more than 100:1, and only the best photo-
graphic prints can provide contrasts as high as 1000:1. However,
scenes that include visible light sources, deep shadows, and specu-
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Figure 2: Applied to a scanline from a high contrast scene, an LCIS
hierarchy separates large features and fine details as an artist might.
Compressing only its simplest features reduces contrasts but pre-
serves details.

lar highlights can reach contrasts of 100,000:1 or much more.
Second, the simplest ways to adjust scene intensities for display

will usually damage or destroy important details and textures. Most
commonly used adjustments are borrowed from photography, and
are given by

Id = F (m � Is ) (1)

whereId; Is are display and scene intensities incd=m2, m is a
scale factor from film exposure, is contrast sensitivity and will
compress contrasts for values< 1:0, andF () limits the output to
display intensity abilities. The simplest, defaultF () truncates out-
of-range intensities to the display limits, but this discards the fine
details and textures in the scene's shadows, highlights, or both, de-
pending on “exposure” or scale factorm. Compressing all scene
contrasts uniformly by adjusting film gamma may compress large
contrasts sufficiently for display, but will also reduce smaller con-
trasts to invisibility. Choosing a better limiting functionF () such as
the S-shaped response of film can help by gracefully compressing
contrasts of scene highlights and shadows, but any function choice
forces a tradeoff between preserving details at mid-range and de-
stroying them in shadows and highlights.

Third and most importantly, understanding of the human visual
system has not advanced sufficiently to allow construction of a
definitive, verifiable, quantitative model of visual appearance, es-
pecially for high contrast scenes where local adaptation effects are
strong. With these uncertainties, artists offer valuable guidance.
Skilled artists learn effective and pleasing ways to convey visual
appearance with limited display media, and for some uses their
methods are more appropriate than current visual appearance mod-
els built from psychophysical measurements and small-signal mod-
els. Accordingly, LCIS is an attempt to mathematically mimic a
well-known artistic technique for rendering high contrast scenes.

When drawing or painting, many artists capture visual appear-
ance with a “coarse-to-fine” sequence of boundaries and shading.
Many begin with a sketch of large, important scene features and
then gradually add finer, more subtle details. Initial sketches hold
sharply defined boundaries around large, smoothly shaded regions
for the largest, highest contrast, and most important scene features.
The artist then adds more shadings and boundaries to build up fine
details and “fill in” the visually empty regions and capture rich de-
tail everywhere.

This method works particularly well for high contrast scenes be-
cause it permits separate contrast adjustments at every stage of in-
creasing detail and refinement. An artist drastically compresses the
contrasts of large features, then adds the fine details and textures
with little or no attenuation to ensure they are visible in the final
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Figure 3: A linear filter hierarchy does not adequately separate fine
details from large features. Compressing only the low-frequency
components to reduce contrasts causes halo artifacts.

image. The artist may also emphasize or mute scene components,
to control their prominence and direct the viewer's attention.

An artist's progressive image refinement is quite different from
widely used linear filter hierarchies, such as wavelets, filter banks,
MIP-maps, and steerable image pyramids. Instead of a hierarchy of
sinusoids, artists use a hierarchy of boundaries and shadings. For
example, consider a simple high contrast scene made from two ad-
jacent sheets of rough-textured paper. A black-colored sheet on the
left is dimly but uniformly lit, but the white sheet on the right is
illuminated by a strong white light source sharply masked to fall
only on the white paper. To an artist, the scene has only one strong
boundary and one faint texture everywhere, as in the scanline plots
of Figure 2 (created by LCIS), but to a linear filter decomposition
this is a rich, broad-band scene, as in Figure 3. At its largest scale,
the linear filter hierarchy is a blurred wash from black to white
showing only that the left and right intensities differ greatly. Each
finer level contains a strong, zero-mean, ripple-like “detail” that
sharpens and narrows the transition from black to white, as ifeach
were improving the focus of a camera. At the finest levels these
focus-like “details” overwhelm the much weaker components of the
paper texture. Reducing scene contrast by compressing only these
coarsest levels fails badly for linear filter methods because some
parts of the scene's step-like “large feature” have escaped compres-
sion by mixing with fine details of the paper texture. The resulting
display image, as shown in Figure 3, suffers from artifacts known
variously as “halos” [1], “overshoot-undershoot” or “gradient re-
versals” [19].

We have devised a new hierarchy that more closely follows artis-
tic methods for scene renderings. Each level of the hierarchy is
made from a “simplified” version of original scene made of sharp
boundaries and smooth shadings. We named the sharpening and
smoothing method “low curvature image simplifiers,” or LCIS, and
will show in Section 5 how to use it in a hierarchy to convert high
contrast scenes to low contrast, highly detailed display images such
as Figure 1.

2 Previous Work

Detail-preserving contrast reduction is a small but central part of
a broader problem: how can we accurately recreate the visual ap-
pearance of all scenes within the narrow limits of existing displays?
As discussed by Tumblin and Rushmeier [16], light levels dramat-
ically affect scene appearance; a forest by starlight looks very dif-
ferent in daylight because of complex, light dependent changes in
human ability to sense contrast, color, detail, and movement. They
advocated “tone reproduction operators” built from mathematical



models of human visual perception to improve displayed images
by imitating the light-dependent changes our eyes would experi-
ence on viewing the actual scene. We must emphasize that the LCIS
method presented here is not true tone reproduction operator, but a
sensitive detail extractor for high contrast scenes; it does not deter-
mine whether these details would be visible to a human viewer.

Soon afterwards Ward [17] published a simple and practical op-
erator to adjust display brightness by analytically finding scale fac-
tor m from scene luminance. Building on this, Ferwerda and col-
leagues [3] used further psychophysical data to model global adap-
tation in both cone- and rod-mediated vision, and included changes
in sensitivity to color, luminance and spatial resolution in their
model. None of these papers have addressed display contrast limi-
tations.

Limited display contrast causes perhaps the worst part of the tone
reproduction problem, because most sensations of scene contents,
color, acuity, and movements can be directly evoked by the dis-
play outputs, but large contrasts cannot. High contrasts must be
reduced for display, yet somehow retain a high contrast appear-
ance, perhaps from secondary effects. Papers by Nakamae [7] and
Spencer [13] and their colleagues present careful models of the op-
tics of the eye responsible for glare, diffraction, and blooming ef-
fects, but as Spencer concluded, these methods must be combined
with a perceptually valid method for contrast reduction. Glob-
ally applied compression functions (F in Equation 1) such as the
S-shaped response of photographic film work well for moderate-
contrast scenes, but can easily obliterate details in highlights and
shadows. The rational function given by Schlick [12] is an excel-
lent compromise, as it adjusts to keep highlight compression min-
imal, is fast and simple to compute, and can be calibrated without
measuring instruments.

Very large contrasts are much more troublesome because com-
pressive functions destroy important details in highlights and shad-
ows unless adjusted according to local image features. Photogra-
phers use “dodging and burning” (moving hand-held masks) to lo-
cally adjust print exposure in a darkroom, inspiring an early pa-
per by Chiuet al. [1] that constructs a locally varying attenuation
factorm by repeatedly clipping and low-pass filtering the scene.
Though their method works well in smoothly shaded regions, any
small, bright scene feature causes strong attenuation of neighbor-
ing pixels and surrounds the feature with a noticeable dark band
or halo artifact as in Figure 3. Schlick's attempts to vary his com-
pression function locally also found halos [12], and he suggested
local image attenuation should change abruptly at feature bound-
aries to avoid them. Tanaka and Ohnishi [14] later published a con-
trast reducing display method similar to Chiuet al., except they
used retinal receptive field measurements to design their linear fil-
ters. Their method also produces halos. Jobson, Rahman and col-
leagues [5, 11] devised a contrast reduction method in accordance
with Land's “retinex” theory of lightness (perceived reflectance)
and color adaptation, but they use linear filters on the logarithm
of scene intensities to find local attenuating factors. Their multi-
scale extensions help reduce halos by merging results from three
manually selected filters.

Ward-Larsonet al. [19] entirely avoided halos by using iterative
histogram adjustment to reduce scene contrasts as part of their tone
reproduction operator. Their operator produces very appealing re-
sults, and includes locally adjusted models of glare, color sensitiv-
ity, and acuity well supported by psychophysical data. However,
their computed mapping from scene to display intensities is strictly
monotonic, while artists and the LCIS method presented here of-
ten use overlapping intensity ranges in different scene regions to
achieve greater displayed contrasts for some features. In another
halo-free approach, Tumblin and colleagues [15] made computer
graphics renderings of separate “layers” of lighting and reflectance
and combined them after compressing illumination. They also pro-
posed an interactive display method for high contrast scenes that re-
computes the displayed image according to “foveal” neighborhood

near the viewer's direction of gaze in the scene.
Building on a rigorous paper on perceptual image metrics [4],

last year Pattanaik and colleagues [9] presented a tone reproduction
operator that performed contrast reduction using an intricate model
of local adaptation assembled from extensive psychophysical data,
including acuity, chromatic adaptation, and many measured non-
linearities of vision. However, contrast reduction is chiefly due to
attenuation in a linear filter hierarchy; despite many admirable qual-
ities, their method is still susceptible to strong halo components.

3 LCIS Method: Shocks and Smoothing

The central importance of boundaries and shadings in artistic ren-
derings suggests a new image decomposition method. To an artist,
shadings usually refer to regions of nearly uniform intensity gra-
dient. Because the gradients change smoothly and gradually with
position, the region has low curvature. An image made entirely of
low curvature regions has boundaries defined by gradient discon-
tinuities, and these may include both ridge-like and step-like fea-
tures, but only ridges are necessary, as a step may be regarded as
two adjacent ridge-like features.

The intensities and locations of theseboundaries alone are suffi-
cient to construct an interesting form of simplified image by inter-
polating between the boundaries with a curvature-minimizing pro-
cess. The result has an interesting physical analogy; imagine image
boundary intensities as a height field made from a frame of thin
wires. Dipping the wires in soapy water forms low-curvature bub-
ble membranes between the wires. By adding more wires we may
encode the entire scene by boundaries and their intensities. Such an
artist-like coarse-to-fine hierarchy is possible if we create a well-
behaved method to find these boundaries and smooth away their
intervening details.

Anisotropic diffusion has shown great success as a boundary-
finding intra-region smoothing method [10] and gathered
widespread attention in the image processing literature. Mathe-
matically, it is a gradual, time-dependent evolution of an image
towards a piecewise-constant approximation, as shown in Figure 5.
The change in image intensity over time is determined by the same
class of partial differential equations (PDEs) that govern diffusion
of heat or other fluids through solids. For example, if we regard the
image intensityI(x;y) as the temperature of a large flat plate of
uniform thin material, and also treat temperature as a measure of
heat fluid per unit area, then the change inI over time is given by:

It =r � (��) =r � (CrI) (2)

Subscripts denote partial derivatives such thatIt is
(@=@t)I(x; y; t), the time rate of change in temperature,Ix
is (@=@x)I(x; y; t), Ixx is (@2=@x2)I(x;y; t), and so forth.C is
the heat conductance scalar, and� is the heat flux, the velocity
vector for heat fluid.

In this classic heat equation, heat flows “downhill” from hot re-
gions to cold regions, from largerI to smallerI, as permitted by
material conductanceC; 0 � C � 1, and all heat fluid move-
ments are described by their flux vector�. The flux is caused by a
“motive force” pushing the fluid in the hot-to-cold direction given
by the negative gradient vector�rI = (Ix; Iy), and by the mate-
rial's conductanceC. If conductance is a constant,C0, the equation
reduces toIt = C0(Ixx+Iyy); as time passes the image changes in
the same way it would if repeatedly convolved with a Gaussian fil-
ter kernel, smoothing away differences between neighboring points
and asymptotically approaching a uniform temperature. The con-
ductanceC determines how fast this smoothing occurs, and if C is
constant the behavior is known as isotropic diffusion.

In anisotropic diffusion the conductance depends on the image,
and both the image and the conductance evolve over time in more
interesting ways. In their seminal 1990 paper, Perona and Ma-
lik [10] noted that conductance controls the rate of local image
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Figure 4: Anisotropic diffusion rapidly forms step discontinuities
or “shocks” in high gradient regions.

smoothing, and proposed that conductance should vary inversely
with a local “edginess” estimate to find, preserve, and sharpen im-
age edges. This edginess value is a measure of the likelihood that a
point is near an edge or boundary. Low conductance at likely edge
locations and high conductances elsewhere preserves ' edgy' fea-
tures, yet rapidly smoothes away the details and textures between
them, and simple edginess estimates work well. They used gradient
magnitude scalarkrIk and offered two inverse functions to find
variable conductanceC(x; y; t). Thus anisotropic diffusion is:

It = r � (C(x; y; t)rI) (3)

=
@
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(CIx) +

@
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(CIy) (4)

whereC(x;y; t) = g (krIk) = g

�p
I2x + I2y

�
, and (chosen

from Perona and Malik [10]):

g(m) =
1

1 +
�
m

K

�2 ; (5)

whereK is the “conductance threshold” form.
Anisotropic diffusion is especially interesting because both its

edge-preserving and its smoothing abilities are self-reinforcing,
as illustrated in Figure 4. Small-gradient regions have high con-
ductance, allowing easy fluid flow that further reduces gradients.
Large-gradient regions have low conductance, discouraging flow
as if forming a weak barrier. However, higher conductances of
its surroundings let fluid erode and steepen the already large gra-
dients. Heat fluid seeps inwards towards the “uphill” side of the
barrier, and fluid quickly drains away from the “downhill” side,
making the large gradient region narrower and steeper, strength-
ening its barrier effect. The region quickly evolves into a step-wise
discontinuity with infinite gradient and zero conductance known as
a “shock.”. As a result, anisotropic diffusion transforms an image
into a piecewise constant approximation with step-like discontinu-
ities in regions of high ' edginess' .

More importantly, the self-reinforcing behaviors of anisotropic
diffusion improve its performance as a boundary finder. Gradient
magnitudes much larger than the “gradient threshold”K in Equa-
tion 5 will consistently form shocks,but the boundary/not-boundary
decision is not a simple threshold testing process. Image behav-
ior at points where gradient magnitude is nearK is strongly in-
fluenced by image surroundings; gradients less thanK may still
form shocks if another shock is forming nearby, and small, isolated
fine details with gradients greater thanK are still smoothed away.
Thus anisotropic diffusion finds boundaries according to both their
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Figure 5: Isotropic diffusion uniformly smoothes the entire image;
anisotropic diffusion forms step-like shocks at persistent high gra-
dients and smoothes away all intensity variations between them,
sometimes forming “stair-steps” [20]; but LCIS forms ridge-like
shocks at persistent high curvatures and smoothes away the gradi-
ent variations between them.

gradients and their surroundings, sharpens the boundaries to create
shocks, and smoothes away all textures and details between them.

Though numerically stable and guaranteed to converge to a
piecewise-constant solution ast ! 1, Nitzberg and Shiota [8]
and others have shown that anisotropic diffusion is ill-posed; in-
finitesimal changes in input can cause very large changes in output
due to the shock-forming process. Shocks usually form at local
gradient maxima and follow image boundaries closely, but this is
not always true. Regions of high, approximately uniform gradient
may develop shocks anywhere within the region. Instead of a sin-
gle large, centrally placed shock, anisotropic diffusion may develop
multiple shocks placed seemingly at random, causing “stairsteps”
in the region as shown in Figure 4 and explored by Whitaker and
Pizer [20].

Inspired by anisotropic diffusion, we have created a related set of
PDEs that capture its self-reinforced smoothing and shock-forming
behavior, but is driven by higher derivatives of the imageI. In-
stead of evolving an image towards a piecewise constant approxi-
mation by driving all gradients towards zero or infinity, our equa-
tions smooth and sharpen an image towards a piecewise linear ap-
proximation by driving all curvatures towards zero or infinity. Be-
cause boundary conditions usually prevent a zero curvature solu-
tion, we call our method a “low curvature image simplifier”(LCIS).

As with anisotropic diffusion, LCIS equations describe fluid
flow, but both the motive force pushing the fluid and the variable
conductances permitting flow are computed differently. The “mo-
tive force” of anisotropic diffusion is the negative gradient�rI,
but LCIS pushes fluids to encourage uniform gradients; it pushes
outwards from intensity peaks or ridges with negative curvature and
inwards towards pits or hollows with positive curvature. Therefore
the LCIS motive force vector should follow positive derivatives of
curvature, but these form a tensor with no obvious single direction.
Instead, we define the motive force vector using simpler directional
derivatives and vector integration. To evaluate the motive force at
image pointI(x0; y0), we first define a 1-D lineL through the point
with orientation� and signed distance parameter� along lineL.
We evaluate the imageI along lineL and find its third derivative
I��� as a measure of curvature change in the direction given by�:

A = x0 + � cos �; (6)
B = y0 + � sin �: (7)

I�(A;B) = Ix(A;B) cos � + Iy(A;B) sin �
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where(A;B) are(x;y) coordinates of lineL(�), I� is the direc-
tional derivative ofI along lineL, andI��� is the third derivative
of I along lineL.

If I��� > 0, then the curvatureI�� is increasing along lineL as
it passes through point(x0; y0); flow in that direction would help
equalize curvatures on either side of the point and reduceI���. Ac-
cordingly, we letI��� define the strength of an infinitesimal motive
force vector along lineL, and we sum up these tiny forces for all
orientations� to find the force vector'sx andy components, labeled
“East” and “North” to avoid confusion with partial derivatives, and
given by:F = (fE; fN );

fE =
1

�

Z
2�

0

I��� cos �d� =
3

4
(Ixxx + Iyyx); (10)

fN =
1

�

Z
2�

0

I��� sin �d� =
3

4
(Ixxy + Iyyy): (11)

For LCIS conductance, we use Equation 5 from anisotropic diffu-
sion, but now them argument is given by a new “edginess” esti-
mate. As our desired ridge-like shocks have infinite curvature, we
constructm from a non-directional measure of curvature magni-
tude: m2 = 0:5(I2xx + Iyy2) + I2xy: Our “low curvature image
simplifier” is then defined as:

It(x;y; t) =r � (C(x; y; t)F (x;y; t)) (12)

whereF (x;y; t) is the motive force vector computed from partial
derivatives and given byF = (fE; fN ) = (Ixxx + Iyyx; Ixxy +
Iyyy), and conductanceC(x; y; t) = g(m) is computed from
“edginess”m using Equation 5.

Low curvature image simplifiers (LCIS) share several important
properties with anisotropic diffusion. Equation 12 is adiabatic; in-
tensity neither created nor destroyed. LCIS meets the goals set
forth by Perona and Malik [10]; varying its conductance thresh-
oldK defines a continuous scale space that exhibits causality, im-
mediate localization, and piecewise smoothing. Conductance is in-
versely linked with the motive force, causing rapid shock formation
at image boundaries, and smoothing between boundaries is self-
reinforcing, though asymptotic. Unlike anisotropic diffusion, LCIS
shocks are discontinuities in gradient instead of intensity; they form
ridge-like features that appear step-like when adjacent. Just as large
high gradient regions can cause multiple shocks or “stairstepping”
in anisotropic diffusion results, LCIS can also form multiple shocks
unpredictably in large regions of uniform high curvature. However,
high curvature regions tend to be smaller due to the larger inten-
sity range they require, and we have found that multiple ridge-like
shocks are far less visually apparent than stairsteps. Finally, both
anisotropic diffusion and LCIS are formally defined for continu-
ously variable(x; y). Any practical implementations must use dis-
crete approximations.

4 LCIS Implementation

Our pixel-based LCIS approximation is straightforward to imple-
ment. We use explicit integration with a fixed timestep to findI(t),
compute a new image on each timestep, assume constant conduc-
tance and flux during each timestep, and compute flux only between
4-connected neighboring pixels. The computation is entirely lo-
cal; each new image is computed only from pixels in the previous
timestep's image, and each new pixel is computed from a fixed set
of neighboring pixels in the previous image.
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Figure 6: LCIS transfers intensity through “links” between pixels.
On each timestep, flux�E ,�N flows throughEW andNS links
respectively, computed from the gray-shaded pixels.

Continuing with the fluid flow analogy, imagine that each pixel is
a tank holding a fluid volume equal to the pixel intensity. Each pixel
reservoir is tied to each of its four-connected neighbors through sep-
arate pipelines or “links.” As shown in Figure 6, pixelP has links
to pixelsE1,N1,W1, andS1. During a fixed timestepT we trans-
fer a fluid quantity “flux”� through a link, decreasing the source
pixel intensity and increasing the destination. On each timestep we
compute flux for each link and then adjust the current image by the
flux amounts to create a new output image.

The left and right sides of Figure 6 show the two types of links.
The drawing on the left shows anEW link connecting pixelsP
andE1. The flux�E that flows through thisEW link is computed
from the values of eight neighborhood pixels shown in gray and
connected by dotted lines. The sign of� determines flow direction:
�E > 0 flows in the+x direction, which lowers the intensity of
pixelP and increases pixelE1 by the same amount. Similarly, link
NS connects pixelsP andN1, and positive flux�N flows in+y
direction to diminishP and increaseN1.

Motive force through each link is found from forward-difference
estimates of third partial derivatives of the image at each link center.
For theEW link between pixelsP andE1:

Ixxx = (E2�W1) + 3(P �E1); (13)
Iyyx = (NE �N1) + (SE � S1) + 2(P �E1); (14)

and for theNS link betweenP toN1,

Iyyy = (N2� S1) + 3(P �N1); (15)

Ixxy = (NE � E1) + (NW �W1) + 2(P �N1):(16)

Conductance of each link is found from forward difference esti-
mates of second partial derivatives. We define:

Pxx = E1 +W1� 2P; Pyy =N1 + S1 � 2P;
Exx = E2 + P � 2E1; Eyy =NE + SE � 2E1;
Nxx =NE +NW � 2N1; Nyy =N2 + P � 2N1;

and

Nxy = (NE �E1) � (N1� P );

Sxy = (E1� SE)� (P � S1);

Wxy = (N1� P )� (NW �W1):

The square of our edginess estimatem is:

m
2

EW = (P 2
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2

yy +E
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xx +E
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xy)=2 for EW links, and (17)
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xy)=2 for NS links. (18)



Assuming constant curvatures and flow rates during each
timestep, the flux through each link is the product of timestep
length, motive force, and conductance, given by�E = TFECE
and�N = TFNCN . We recommend a timestep ofT � 1=32 for
stability. FE andFN are the motive forces drivingEW andNS
flux, given byFE = (Ixxx + Iyyx) andFN = (Ixxy + Iyyy).
Conductances throughNS andEW links are

CE =
1

1 +
�
mEWDE

K

�
2

(19)

and

CN =
1

1 +
�
mNSDN

K

�2 : (20)

wheremEW , mNS are edginess estimates from Equations 17 and
18,DE, DN are leakfix multipliers explained below, initialized to
1.0.

Estimating image derivatives with adjacent pixel differences
causes “leakage” problems. Shocks in continuous images form
perfectly impermeable boundaries to prevent any fluid flow across
them. Though discrete images also form shocks, neither the gra-
dients nor the curvature estimates reach infinity due to the fixed,
finite spacing between pixels, allowing small fluid flows or “leaks”
across boundaries that should be impermeable. Small leaks over
many timesteps gradually erode the image boundaries and eventu-
ally destroy them all. Though several papers (e.g.[6]) offer strate-
gies for stopping the time evolution before boundary erosion is too
large, any chosen stopping time is a compromise between adequate
intra-region smoothing and minimal leakage. Instead, we devised a
simple leakage fix that works quite well for both discrete LCIS and
anisotropic diffusion.

Our leakage fix is a single self-adjusting “leakfix multiplier”
valueDE orDN stored for eachEW orNS link respectively and
used in Equations 19 and 20. We noticed in Equation 5 that shock
forming drives all the edginess estimatesm rapidly away from
the conductance thresholdK in the earliest timesteps. Edginess
estimates at boundaries are boosted towards infinity by shock
formation, and self-reinforced smoothing drives all otherm below
K and towards zero. To identify and prevent leakage as an image
evolves, we continually comparem againstK to find links that
cross image boundaries and should hold shocks, and we adjust
DE or DN of these links to amplify their edginess estimatesm
and drive conductance towards zero. Leakfix multipliers grow
exponentially with time in links wherem is consistently larger
thanK, but settles rapidly back towards1:0 if edginess falls below
K. In our implementation, initiallyDE = 1:0 andDN = 1:0 for
all pixels, then for each timestep:

DE =

�
DE(1:0 +mEW ) if(mEW > K),
0:9DE + 0:1 otherwise, and (21)

DN =

�
DN (1:0 +mNS) if(mNS > K),
0:9DN + 0:1 otherwise. (22)

The leakage fix also provides a convenient marker for bound-
aries; we label any link with a leakfix multiplier greater than10:0 as
a “boundary link” that may cross a ridge-like boundary shock in the
image. Even though conductance drops to zero at LCIS shocks, our
analysis of continuous LCIS showed ridge-like shocks should not
evolve into step-like shocks during intra-region smoothing. To pre-
vent this divergence in our discrete implementation, we also mark
the pixels on either end of a boundary link as “boundary pixels”
and stop all subsequent flux into or out of these pixels; see the Pro-
ceedings CD-ROM for source code. With this simple two-part fix
we have not encountered any noticeable problems with leakage or
boundary erosion.

Figure 7: Images from an LCIS hierarchy reveal its methods. From
a part of the church scene of Figure 9, LCIS creates a boundary
pixel map (top left), and a simplified image (top right), shown after
contrast compression to make it displayable. A detail image (lower
left) holds the input minus the simplified image. A detailed dis-
playable image(lower right) is the sum of images at upper right and
lower left.
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Figure 8: Detail-preserving contrast reduction method using an
LCIS hierarchy, as used for Figures 1 and 9.

5 Contrast Reduction: LCIS Hierarchy

Discrete LCIS mimics the artist's drawing process in reverse; it
selectively removes details from a scene to leave only smoothly
shaded regions separated by sharp boundaries. We can easily re-
cover the removed details by subtracting the LCIS-smoothed im-
age from the original scene, and then follow the artists scheme for
detail-preserving contrast reduction: we strongly compress the con-
trasts of the simplified image, then add in the details with little or
no compression, as shown in Figure 7.

The LCIS hierarchy shown in Figure 8 shows the expandable
multiscale form we used to make Figures 1 and 9. Just as an artist
may create an image by progressive refinement, the LCIS hierar-
chy extracts preserved scene details with a progressive set of LCIS
settings. We first convert the scene to its base-10 logarithm so that
pixel differences directly correspond to contrasts (intensity ratios).
Our handling of color here is rudimentary: we apply LCIS only to
scene luminances and reconstruct color outputs using color ratios
as suggested by Schlick [12]. Next, we make a set of progressively
simpler images by applying LCIS with progressively largerK val-
ues starting from zero: whenK = 0, LCIS has no effect on the



Figure 9: These low contrast, highly detailed display images were made using an LCIS hierarchy as diagrammed in Figure 8. In the Stanford
Memorial Church scene (radiance map courtesy Paul Debevec, University of California at Berkeley; see [2]), note the visible floor tile seams,
wood grain, gold inlay texture, and stone arch fluting. Vast contrasts (> 250; 000 : 1) prevent capturing all these details within a single
photograph. The hotel room image, from a radiometrically accurate high contrast scene (> 70; 000 : 1) designed and rendered by Simon
Crone using RADIANCE [18], shows rich detail everywhere, even in highlights and shadows; note the floor lamp bulb and glass shade still
plainly visible against the brilliant window shades, and the complex shadows on the wall and ceiling. Source Image: Proposed Burswood
Hotel Suite Refurbishment (1995). Interior Design – The Marsh Partnership, Perth, Australia. Computer Simulation – Lighting Images,
Perth, Australia. Copyrightc 1995 Simon Crone.

input image. For the church scene in Figure 9 we usedK1 = 0:06,
K2 = 0:10 andK3 = 0:16. LCIS with the largestK value makes
the simplest or “base” image, and we extract a graduated set of
“detail” images (det0; det1; :::) by subtraction, with the finest de-
tails in det0. Next, we compress their contrasts by scaling (for the
church image in Figure 9 we chosew0;1;2;3 = 1:0; 0:8; 0:4; 0:16,
wcolor = w3) and then add and exponentiate to find display in-
tensities. Our test-bed software allows us to interactively adjust
the parametersK, w, and the number of LCIS timesteps, and by
trial and error we found 100 to 1000 timesteps andK from 0:02
to 0:32 spanned our entire range of interest for all our test scenes.
Thoughwbase is dictated by desired display contrast,w0 is usu-
ally best around 1.0 with interveningw values between the two,
none are critical; a wide range of settings provides a pleasing vi-
sual appearance and small changes are not easy to notice. Usually
wcolor = wbase looked pleasant, but some images looked better
with exaggerated values: we setwbase = 0:2 in the hotel room
scene, but usedwcolor = 0:6 to avoid a “washed out” appearance.

6 Results

As shown in Figures 1 and 9, the LCIS hierarchy reveals an as-
tonishing amount of subtle detail and scene content. Though we
think the histogram-based result of Ward-Larsonet al. [19] (also

seen in [2]) is a more beautiful and natural-looking depiction of
Debevec's Stanford Church radiance map, it does not include many
features clearly visible in the LCIS result. For example, note the
intricate gold filigree in the ceiling dome. Linear filter-based meth-
ods have difficulties with strong halo artifacts cause by the skylight
nearby. LCIS also reveals rich detail in the hotel room scene; previ-
ous depictions of this scene often made the carpet and bed covering
look muted and subtle, here we see strong wood, bedspread and car-
pet textures. The elaborate shadow details behind the plant and on
the ceiling also suggests the sun and sky lighting was approximated
with several point sources.

We confirmed that these details exist at these contrasts in the
scene by using simple scaling and truncation to display scene ra-
diances. In Figures 1 and 9 we include tiny versions of scaled,
truncated scene radiances with = 1:0 and scale factorm (Equa-
tion 1) increasing by a factor of 10 for each successive image to
help viewers understand the scenes' huge contrasts.

Computing costs for LCIS results are moderate in our current
implementation. Written in Visual C++ without regard for speed
or efficiency, using 32-bit floating point values for all images and
computations, our code required 14 minutes 47 seconds to compute
a 187x282-pixel image of Figure 1 on a 200 MHz Pentium Pro with
128MB RAM running Windows NT4.0. This timing result includes
five LCIS simplifiers computing 500 timesteps each, the auxiliary
calculations diagrammed in Figure 8, and windowing and display



overhead of an interactive data-flow application. Most of our tests
of LCIS behavior and our choices of parameters such as curvature
thresholdsK, weighting factorsw, and the number of timesteps
were made interactively on much smaller images (often 128 x 192)
where computing delays rarely exceeded 30 seconds. We found
that parameter choices at low resolutions invariably worked well for
much larger images, and no parameter settings needed extensive or
critical tuning. Better integration methods and software tuning may
also greatly improve these initial LCIS speed ratings.

7 Discussion and Future Work

LCIS smoothing and LCIS hierarchies offer a new way to decom-
pose an image reversibly into a multiscale set of large features,
boundaries and fine details. It permits a novel form of detail-
preserving contrast reduction that avoids halo artifacts common to
previous methods based on linear filtering. Detail extraction prob-
lems arise in many domains, and LCIS may also be useful for view-
ing other high contrast signals such as data from astronomy, radi-
ology or seismology. The initial results images presented here are
promising, but our LCIS work has many open questions and oppor-
tunities for further research. Though we found theK andw con-
trols of the LCIS hierarchy easy to use, they affect the image glob-
ally; would localized, paint-box-like controls to vary them within
the scene be a useful artistic tool? Conversely, how could we best
apply psychophysical data to control an LCIS hierarchy automati-
cally and perform as a true tone reproduction operator? How could
a more thoughtful treatment of color better exploit the boundary
and detail information it contains?

We have also discovered that even though LCIS forms sharp
boundaries without smoothing across them, sometimes weak,
“residual halo” artifacts can appear with strong contrast reductions.
However, even the worst residual halos are far weaker than those
from linear filters, and are caused by a different mechanism. Resid-
ual halos seem to form only in blurred image regions with high con-
trast, sparse shocks and low curvature such as a badly out-of-focus
step image. If shocks do not form at the blurred boundary, LCIS
further smoothes the region and reduces its curvature, causing a
broad low-curvature component to appear in one or more “detail”
images in Figure 8. Weak residual halos are visible in Figure 1 un-
der the left lowermost tree branches. We are currently investigating
a solution for this anomaly.

We do not yet fully understand the relationship between curva-
ture, spatial scale, contrast, and shock formation for a givenK, but
suspect that the extensive published studies of anisotropic diffu-
sion may offer help. Large scale, high contrast scene features such
as soft shadows may have very low curvatures obscured by small
scale high curvature textures; can LCIS-like methods find shocks
for both? Can we ensure “reasonable” behavior for LCIS for all
possible images?

Finally, extending LCIS to higher dimensions appears straight-
forward, and may be useful for revealing fine details in high contrast
3D scalar and vector fields or for motion estimation in high contrast
scenes.
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