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Abstract

Traditionally, shape transformation using implicit functions is per-
formed in two distinct steps: 1) creating two implicit functions,
and 2) interpolating between these two functions. We present a
new shape transformation method that combines these two tasks
into a single step. We create a transformation betweenNwo
dimensional objects by casting this as a scattered data interpolation
problem inN + 1 dimensions. For the case of 2D shapes, we place
all of our data constraints within two planes, one for each shape.
These planes are placed parallel to one another in 3D. Zero-valued
constraints specify the locations of shape boundaries and positive-
valued constraints are placed along the normal direction in towards
the center of the shape. We then invoke a variational interpolation
technique (the 3D generalization of thin-plate interpolation), and

this yields a single implicit function in 3D. Intermediate shapes are
simply the zero-valued contours of 2D slices through this 3D func-

tion. Shape transformation between 3D shapes can be performed]-

similarly by solving a 4D interpolation problem. To our knowledge,

Figure 1: Visualization of transformation between X and O shapes.
Jop and bottom planes contain constraints for the two shapes.
ranslucent surface is the isosurface of a 3D variational implicit
function, and slices through it give intermediate shapes.

ours is the first shape transformation method to unify the tasks of
implicit function creation and interpolation. The transformations ) ) ) ) )
produced by this method appear smooth and natural, even betweeriect data about a patients internal anatomy in “slices” of a particu-
objects of differing topologies. If desired, one or more additional lar size such as 512512 samples. Usually many fewer slices are
shapes may be introduced that influence the intermediate shapes ifiaken along the third dimension so that a resulting volume might,

a sequence. Our method can also reconstruct surfaces from multiplefor example, be sampled at 5%¥2%512x 30 resolution. To recon-
slices that are not restricted to being parallel to one another. struct a 3D model of a particular organ, the samples are segmented
. . . to create shapes (contours) within the slices. Intermediate shapes
CR Categories: 1.3.5 [Computer Graphics]: Computational Ge- 16 then created between slices in the sparsely sampled dimension.
ometry and Object Modeling—surfaces and object representations Tne reconstructed 3D object is formed by stacking together the
Keywords: Shape transformation, shape morphing, contour inter- original and the in_terpolated contours. This is an example of 2D
polation, implicit surfaces, thin-plate techniques. shape transformation.

Shape transformation can also be a useful tool in computer aided
geometric design. Consider the problem of creating a join between
two metal parts with different cross-sections. It is important for the
connecting surface to be smooth because those places with sharp
The shape transformation problem can be stated as follows: Givenridges or creases are the locations that are most likely to form
two shapes A and B, construct a sequence of intermediate shapesracks. The intermediate surface joining the two parts can be cre-
so that adjacent pairs in the sequence are geometrically close to onated using shape transformation, much in the same way as with
another. Playing the resulting sequence of shapes as an animatiorwontour interpolation for medical imaging. Because of the smooth-
would show object A deforming into object B. Sequences of 2D ness properties of variational interpolation methods, we consider
shapes can be thought of as slices through a 3D surface, as shown ithem a natural tool to explore for shape transformation in CAD.
Figure 1. Shape transformation can be performed between objects Finally, animated shape transformations have been used to cre-
of any dimension, although 2D and 3D shapes are by far the mostate dramatic special effects for feature films and commercials. One
common cases. Shape transformation has applications in medicinepf the best-known examples of shape transformation is in the film
computer aided design, and special effects creation. We give anTerminator 2 In this film, a cyborg policeman undergoes a number
overview of these three applications below. of transformations from an amorphous and highly reflective surface

One important application of shape transformation in medicine is to various destination shapes. 2D image morphing would not have
contour interpolation. Non-invasive imaging techniques often col- accurately modeled the reflection of the environment off the surface
of the deforming cyborg, hence tailor-made 3D shape transforma-
tion programs were used for these effects [9].

In this paper we use variational interpolation in a new way to
produce high-quality shape transformations that may be used for
any of the previously mentioned applications. Our method allows a
user to control the transformation in several ways, and it is general
enough to produce transformations between shapes of any topology.

1 Introduction

turk@cc.gatech.edu, job@acm.org.

2 Previous Work

Most shape transformation techniques can be placed into one of
two categories: parametric correspondence methods and implicit


ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permission
to make digital or hard copies of part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page or initial screen of the
document. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Publications
Dept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper can be found in the "papers/turk" directory.


function interpolation. Parametric methods are typically faster to ~ Several researchers have used the signed distance function to in-
compute and require less memory because they operate on a lowerterpolate between 2D contours [19, 14]. The distance function for
dimensional representation of an object than do implicit function each given shape is represented as a regular 2D grid of values, and
methods. Unfortunately, transforming between objects of differ- an intermediate implicit function is created by linear interpolation
ent topologies is considerably more difficult with parametric meth- between corresponding grid values of the two implicit functions.
ods. Parametric approaches also can suffer from problems with Each intermediate shape is given by the zero iso-contour of this in-
self-intersecting surfaces, but this is never a problem with implicit terpolated implicit function. In contrast to the global interpolation
function methods. Techniques that use implicit function interpola- methods described above (frequency domain, wavelets, Minkowski
tion gracefully handle changes in topology between objects and do sum), this interpolation is entirely local in nature. Nevertheless,
not create self-intersecting surfaces. the shape transformations that are created by this method are quite
A parametric correspondence approach to shape transformatiorgood. In essence, the information that the signed distance function
attempts to find a “reasonable” correspondence between pairs ofencodes (distance to nearest boundary) is enough to make up for
locations on the boundaries of the two shapes. Intermediate shapeghe purely local method of interpolation. Payne and Toga were the
are then created by computing interpolated positions between thefirst to transform three dimensional shapes using this approach [23].
corresponding pairs of points. Many shape transformation tech- Cohen-Or and colleagues gave additional control to this same ap-
niques have been created that follow the parametric correspondencgoroach by combining it with a warping technique in order to pro-
approach. One early application of this approach is the method duce shape transformations of 3D objects [7].
of contour interpolation described by Fuchs, Kedem and Uselton  Our approach to shape transformation combines the two steps
[10]. Their method attempts to find an “optimal” (minimum-area) of building implicit functions and interpolating between them. To
triangular tiling that connects two contours using dynamic pro- our knowledge, it is the only method to do so. The remainder of
gramming. Many subsequent techniques followed this approach of this paper describes how variational interpolation can be used to
defining a quality measure for a particular correspondence betweensimultaneously solve these two tasks.
contours and then invoking an optimization procedure [22, 25].
There have been fewer examples of using parametric correspon-
dence for 3D shape transformation. One quite successful 3D para-3  Variational Interpolation
metric method is the work of Kent et al. [17]. The key to their

approach is to subdivide the polygons of the two models in a man- our approach relies oscattered data interpolatioto solve the
ner that creates a correspondence between the vertices of the tWQnape transformation problem. The problem of scattered interpo-
models. More recently, Gregory and co-workers created a similar |ation is to create a smooth function that passes through a given
method that also allows a user to specify region correspondencesset of data points. The two-dimensional version of this problem
between meshes to better control a transformation [12]. can be stated as follows: Given a collectionkofonstraint points

An entirely different approach to shape transformation is to cre- {c; c,,..., ¢} that are scattered in the plane, together with scalar
ate an implicit function for each shape and then to smoothly interpo- height values at each of these poifits, hy, ..., h}, construct a
late between these two functions. A shape is defined by an implicit smooth surface that matches each of these heights at the given lo-
function, f(x), as the set of all points such thatf (x) = 0. For cations. We can think of this solution surface as a scalar-valued
contour interpolation in 2D, the implicit function can be thought of  function f (x) so thatf(¢;) = h;, for 1<i <k.
as a height fle|d over a tyvo-dlmen5|onal domgin, and the boundafy One common approach to solving scattered data problems is to
of a shape is the one-dimensional curve defined by all the points yse variational techniques (from the calculus of variations). This
that have the same elevation value of zero. An implicit function in approach begins with an energy that measures the quality of an in-
3D is a function that yields a scalar value at every pointin 3D. The terpolating function and then finds the single function that matches
shape described by such a function is given by those places in 3Dthe given data points and that minimizes this energy measure. For
whose function value is zero (the isosurface). . two-dimensional problems, thin-plate interpolation is the varia-

One commonly used implicit function is tleside/outside func- tional solution when using the following energy functign
tion or characteristic function This function takes on only two
values over the entire domain. The two values that are typically
used are zero to represent locations that are outside and one to E= /Q f><2><(x)+2f><2y(x)+ fyzy(x) 1)
signify positions that are inside the given shape. Given a power-
ful enough interpolation technique, the characteristic function can  The notationfyx means the second partial derivative in thei-
be used for creating shape transformations. Hughes presented aection, and the other two terms are similar partial derivatives, one
successful example of this approach by transforming characteris- of them mixed. The above energy function is basically a measure of
tic functions into the frequency domain and performing interpola- the aggregate squared curvaturef ¢f) over the region of interest
tion on the frequency representations of the shapes [15]. Kaul andQ. Any creases or pinches in a surface will resultin a larger value of
Rossignac found that smooth intermediate shapes can be generateH. A smooth surface that has no such regions of high curvature will
by using weighted Minkowski sums to interpolate between charac- have a lower value dE. The thin-plate solution to an interpolation
teristic functions [16]. They later created a generalization of this problem is the functiorf (x) that satisfies all of the constraints and
technique that can use several intermediate shapes to control the inthat has the smallest possible value=of
terpolation between objects [24]. Using a wavelet decomposition  The scattered data interpolation problem can be formulated in
of a characteristic function allowed He and colleagues to create in- any number of dimensions. When the given poitare positions
termediates between quite complex 3D objects [13]. in N-dimensions rather than in 2D, this is called t&imensional

A more informative implicit function can provide excellentinter-  scattered data interpolation problem. There are appropriate gener-
mediate shapes even if a simple interpolation technique is used. Inalizations to the energy function and to thin-plate interpolation for
particular, thesigned distance functiofsometimes called thdis- other dimensions. In this paper we will perform interpolation in
tance transformis an implicit function that gives very plausible  two, three, four and five dimensions. Because the térimplate
intermediate shapes even when used with simple linear interpola-is only meaningful for 2D problems, we will usariational inter-
tion of the function values of the two shapes. The value of the polationto mean the generalization of thin-plate techniques to any
signed distance function at a poininside a given shape is justthe  number of dimensions.

Euclidean distance betweerand the nearest point on the bound- The scattered data interpolation task as formulated above is a
ary of the shape. For a poirtthat is outside the shape, the signed variational problem where the desired solution is a functidx,),
distance function takes on the negative of the distance krtmrthe that will minimize equation 1 subject to the interpolation constraints

closest point on the boundary. f(ci) = hi. Equation 1 can be solved using weighted sums of the



Figure 2: Implicit functions for an X shape. Left shows the signed ) . . .
distance function, and right shows the smoother variational implicit Figure 3: Upper row is a shape transformation created using the
function. signed distance transform. Lower row is the sequence generated

using a single variational implicit function.

radial basis function(x) = [x|?log(|x|). The family of variational - . .
problems that includes equation 1 was studied by Duchon [8]. 4 Smooth Implicit Function Creation
Using the appropriate radial basis function, we can then express

the interpolation function as In this section we will lay down the groundwork for shape transfor-

mation by discussing the creation of smooth implicit functions for
n a single shape. In particular, we will use variational interpolation of
_ (X — O scattered constraints to construct implicit functions. Later we will
F0o0 = j;d,(p(x ¢j)+P() ) generalize this to create functions that perform shape transforma-
tion.

Let us first examine the signed distance transformation because
it is commonly used for shape transformation. The left half of
Figure 2 shows a height field representation of the signed distance
function of an X shape. The figure shows sharp ridgesrtibdial
axig) that run down the middle of the height field. Ridges appear
in the middle of shapes where the points are equally distant from
two or more boundary points of the original shape. The values of a

' signed distance function decrease as one moves away from the ridge
towards the boundaries. Figure 3, top row, shows a shape interpola-
finite element or finite difference methods tion sequence between an X and an O shape that was created by lin-

h AU . ear interpolation between two signed distance functions. Note the
To solve for the set offj that will satisfy the interpolation con- ,inched portions of some of the intermediate shapes. These sharp
straintsh; = (i), we can substitute the right side of equation 2 for  features are not isolated problems, but instead persist over many in-
f(ci), which gives: termediate shapes. The cause of these pinches are the sharp ridges
of signed distance functions. In many applications such artifacts are
undesirable. In medical reconstruction, for example, these pinches
k are a poor estimate of shape because most biological structures have
hi = Zdj(P(Ci —¢)+P(ci) 3) smooth surfaces. Because of this, we seek implicit functions that
= are continuous and that have a continuous first derivative.

In the above equatiorg; are the locations of the constraints,
the dj are the weights, anB(x) is a degree one polynomial that
accounts for the linear and constant portionsfof Because the
thin-plate radial basis function naturally minimizes equation 1, de-
termining the weightsd;, and the coefficients dP(x) so that the
interpolation constraints are satisfied will yield the desired solution
that minimizes equation 1 subject to the constraints. Furthermore
the solution will be an exact analytic solution, and is not subject to
approximation and discretization errors that may occur when using

Since this equation is linear with respect to the unknovs,
and the coefficients d?(x), it can be formulated as a linear system.
For interpolation in 3D, let; = (cf(,ci",ciz) and let@; = @(c —c¢;j). We can create smooth implicit functions for a given shape using
Then this linear system can be written as follows: variational interpolation. This can be done both for 2D and 3D

shapes, although we will begin by discussing the 2D case. In this

approach, we create a closed 2D curve by describing a number of

4.1 Variational Implicit Functions in 2D

[ (1 P2 ... Qi i %{ gyg, EZ% T7d ] [ h] locations through which the curve will pass and also specifying a
2 G

®1 @2 ... Q@x dz hy number of points that should be interior to the curve. We call the
. . . . given points on the curve tHeoundary constraintsThe boundary

d: constraints are locations at which we require our implicit function
Ik =

Ga e ok 1 Cii Cﬁ Cﬁ hy to take on the value of zero. Paired with each boundary constraint

1 1 1 0 0 0 O Po 0 is anormal constraint which is a location at which the implicit

g o ¢ 0 0 0 O pP1 0 function is required to take on the value one. (Actually, any posi-

cg’ cg 0{5 0O 0 0 O P2 0 tive value could be used.) The locations of the normal constraints
L c% cg CE 0 0 0 O0J]L ps] . 0 | should be towards the interior of the desired curve, and also the line

passing through the normal constraint and its paired boundary con-
straint should be parallel to the desired normal to the curve. The
The above system is symmetric and positive semi-definite, so collection of boundary and normal constraints are passed along to
there will always be a unique solution for thdg and p; [11]. For a variational interpolation routine as the scattered constraints to be
systems with up to a few thousand constraints, the system can beinterpolated. The function that is returned is an implicit function
solved directly with a technique such as symmetric LU decompo- that describes our curve. The curve will exactly pass through our
sition. We used symmetric LU decomposition to solve this system boundary constraints.
for all of the examples shown in this paper. Figure 4 (left) illustrates eight such pairs of constraints in the
Using the tools of variational interpolation we can now turn our plane, with the boundary constraints shown as circles and the nor-
attention to creating implicit functions for shape transformation. mal constraints as plus signs. When we invoke variational interpo-



Now that we can construct smooth implicit functions for both
two- and three-dimensional shapes, we turn our attention to shape
transformation. It would be possible to create variational implicit
functions for each of two given shapes and then linearly interpo-
late between these functions to create a shape transformation se-
gquence. Instead, however, we will examine an even better way of
performing shape transformation by generalizing the implicit func-
tion building methods of this section.

Figure 4: At left are pairs of boundary and normal constraints (cir- . . .

cles and pluses). The middle image uses intensity to show the re-5  Unifying Function Creation and Inter-
sulting variational implicit function, and the right image shows the polation

function as a height field.

] ] ) ) ) The key to our shape transformation approach is to represent the
lation with such constraints, the result is a function that takes on the entire sequence of shapes with a single implicit function. To do so,

value of zero exactly at our zero-value constraints and that is posi- we need to work in one higher dimension than the given shapes.

tive in the direction of our normal constraints (towards the interior For 2D shapes, we will construct an implicit function in 3D that

of the shape). The closed curve passing through the zero-value conrepresents our two given shapes in two distinct parallel planes. This

straints in Figure 4 (middle) is the iso-contour of the implicit func- s actually simple to achieve now that we know how to use scattered

tion created by this method. Figure 4 (right) shows the resulting data interpolation to create an implicit function.

implicit function rendered as a height field. Given enough suitably-

placed boundary constraints we can define any closed shape. We

call an implicit function that is created in this manneraiational 5.1 Two-Dimensional Shape Transformation

implicit function This new technique for creating implicit functions

also show promise for surface modeling, a topic that is explored in Given two shapes in the plane, assume that we have created a set

[27]. of boundary and normal constraints for each shape, as described
We now turn our attention to defining boundary and normal con- in Section 4. Instead of using each set of constraints separately to

straints for a given 2D shape. Assume that a given shape is rep-create two different 2D implicit functions, we will embed all of the

resented as a gray-scale image. White pixels represent the interioiconstraints in 3D. We do this by adding a third coordinate value

of a shape, black pixels will be outside the shape, and pixels with to the location of each boundary and normal constraint. For those

intermediate gray values lie on the boundary of the shape.m_et constraints for the first shape, we set the new coordiné&be all

be the middle gray value of our image’s gray scale range. Our goal constraints td = 0. For the second shape, all of the new coordinate

is to create constraints between any two adjacent pixels where onevalues are set tb= tmax (SOme non-zero value). Although we have

pixel's value is less tham and the other’s value is greater. Identify- added a third dimension to the locations of the constraints, the val-

ing these locations is the 2D analog of finding the vertex locations ues that are to be interpolated remain unchanged for all constraints.

in a 3D marching cubes algorithm [21]. Once we have placed the constraints of both shapes into 3D,
We traverse the entire gray-scale image and examine the east andve invoke 3D variational interpolation to create a single scalar-
south neighbor of each pixg{x,y). If 1(x,y) < mand either neigh-  valued function oveR3. If we take a slice of this function in the

bor has a value greater them we create a boundary constraintata planet = 0, we find an implicit function that takes on the value
point along the line segment joining the pixel centers. A boundary zero exactly at the boundary constraints for our first shape. In this
constraint is also created lifx,y) > m and either neighbor takes  plane, our function describes the first shape. Similarly, in the plane
on a value less tham. The value of the constraint is zero, and we  t =t this function gives the second shape. Parallel slices at loca-
set the position of the constraint at the location between the two tions between these two planes<Q < tmay) represent the shapes
pixels where the image would take on the valuerdf we assume  of our shape transformation sequence. Figure 1 illustrates that the
linear interpolation of pixel values. Next, we estimate the gradient collection of intermediate shapes are all just slices through a surface
of the gray scale image using linear interpolation of pixel values in 3D that is created by variational interpolation.
a_nd central differencing. We then c_reat_eanorr_nal (_:onstraintashqrt Figure 3 (bottom) shows the sequence of shapes created us-
distance away from the zero crossing in the direction of the gradi- ing this variational approach to shape transformation. Topology
ent. We have found that a d|S.tance of a p|Xe|_'S W|dth betW.een the Changes (eg the addition or removal of ho|es) come “for free”,
boundary and normal constraints works well in practice. Figure 2 without any human guidance or algorithmic complications. Notice
(right) shows the implicit function for an X shape that was created tnat all of the intermediate shapes have smooth boundaries, without
and free of sharp ridges. a change in topology such as when two parts join. Figure 5 shows
two more shape transformations that use this approach and that also
P - ; ; incorporate warping. Warping is an another degree of control that
4.2 Variational Implicit Functions in 3D may be added to any shape transformation technique, and is in fact
We can create implicit functions for 3D surfaces using variational
interpolation in much the same way as for 2D shapes. Specific

we can derive 3D constraints from the vertex positions and sur
normals of a polygonal representation of an object. (kef, z) and w
(nx,ny,nz) be the position and the surface normal at a vertex,

spectively. Then a boundary constraint is placedxay,z) and a

normal constraint is placed @t— kny,y —kny, z—kn,), wherek is

some small value. We use a valuekof 0.01 for models that fit

within a unit cube for the results shown in this paper. All of the & Tb Ca r b | 4 r D ' 4 tn I E n d
models that we transform in this paper were constructed by bunu-

ing an implicit function in this manner. Note that we can use this

method to build an implicit function whenever we have a collection Figure 5: Two shape transformation sequences (using the varia-
of points and normals— polygon connectivity is not necessary.  tional implicit technique) that incorporate warping.



an orthogonal issue to those of implicit function creation and inter-
polation. Although it is not a focus of our research, for complete-
ness we briefly describe warping in the appendix.

Why has this implicit function building method not been tried
using other ways of creating implicit functions? Why not, for
example, build a signed distance function in one higher dimen-
sion? Because eompletedescription of an object's boundary is
required in order to build a signed distance function. When we em-
bed our two shapes into a higher dimension, we only kngieae
of the boundary of our desired higher-dimensional shape, namely
the cross-sections that match the two given objects. In contrast, a
complete boundary representatiomé@ required when using varia-
tional interpolation to create an implicit function. Variational inter-
polation creates plausible function values in regions where we have
no information, and especially in the “unknown” region between
the two planes that contain all of our constraints. This plausibility
of values comes from the smooth nature of the functions that are
created by the variational approach.

5.2 Three-Dimensional Shape Transformation

Just as we create a 3D function to create a transformation between
2D shapes, we can move to 4D in order to create a sequence be-
tween 3D shapes. We perform shape interpolation between two
3D objects using boundary and normal constraints for each shape.
We place the constraints from two 3D objects into four dimensional
space, just as we placed constraints from 2D contours into 3D. Sim-
ilar to contour interpolation, the constraints are separated from one
another in the fourth dimension by some specified distance. We
place all the constraints from the first object at 0, and the con-
straints from the second object are placet-atmax Wheretmaxis

the given separation distance. We then create a 4D implicit func-
tion using variational interpolation. An intermediate shape between
the two given shapes is found by extracting the isosurface of a 3D
“slice” (actually a volume) of the resulting 4D function.

Figure 6 shows two 3D shape transformation sequence that were
constructed using this method. To extract these surfaces we use
code published by Bloomenthal that begins at a seed location on the
surface of a model and only evaluates the implicit function at points
near previously visited locations [4]. This is far more efficient than
sampling an entire volume of the implicit function and then ex-
tracting an isosurface from the volume. The matrix solution for the
transformation sequence of Figure 6 (left) required 13.5 minutes,
and each isosurface in the sequence took approximately 2.3 min-
utes to generate on an SGI Indigo2 with a 195 MHz R10000 pro-
cessor. Figure 6 (right) shows a transformation between 3D shapes
that used warping to align features.

6 Surface Reconstruction from Contours

So far we have only considered shape transformation between pairs
of objects. In medical reconstruction, however, it is often neces-
sary to create a surface from a large number of parallel 2D slices.
Can'’t we just perform shape interpolation between pairs of slices
and stack the results together to create one surface in 3D? Although
this method will create a continuous surface, it is almost certain
to produce a shape that has surface normal discontinuities at the
planes of the original slices. In the plane of slicéhe surface cre-
ated between slice pairs- 1 andi will usually not agree in surface
normal with the surface created between slicaadi + 1. Nearly

all contour interpolation methods consider only pairs of contours at
any one time, and thus suffer from such discontinuities. (A notable
exception is [1]).

To avoid discontinuities in surface normal, we must use infor-
mation about more than just two slices at a given time. We can
accomplish this using a generalization of the variational approach
to shape transformation. Assume that we begin Witlets of con- 3D simultaneously. Specifically, the constraints of sliaee placed
straints, one set for each 2D data slice. Instead of considering thein the planez = si, wheres is the spacing between planes. Once
contours in pairs, we place the constraints for all ofklséices into the constraints fronall slices have been placed in 3D, we invoke

Figure 6: 3D shape transformation sequences.



Figure 7: Reconstruction of hip joint from contours. Top row shows the five parallel slices used and the final surface. Bottom row shows
intersecting contours and the more detailed surface that is created.

variational interpolatioronceto create a single implicit function in ~ about varying separation distances into the surface reconstruction

3D. The zero-valued isosurface exactly passes through each conjprocess.

tour of the data. Due to the smooth nature of variational interpola-  For both special effects production and for computer aided de-

tion, the gradient of the implicit function is everywhere continuous. sign, the distance between the separating planes can be thought of

This means that surface normal discontinuities are rare, appearingas a control knob for the artist or designer. If the distance is small,

in pathological situations when the gradient vanishes such as whenonly pairs of features from the two shapes that are very close to one

two features just barely touch. Figure 7 (top row) illustrates the another will be preserved through all the intermediate shapes. If

result of this contour interpolation approach. The hip joint recon- the separation distance is large, the intermediate shape is guided by

struction in the upper right was created from the five slices shown more global properties of the two shapes. In some sense, the sep-

at the upper left. arating distance specifies whether the shape transformation is local
A side benefit of using the variational implicit function method or global in nature. The separation distance is just one control knob

is that it produces smoothly rounded caps on the ends of surfacesfor the user, and in the next section we will explore another user

Notice that in Figure 7 (top left) that the reconstructed surface ex- control.

tends beyond the constraints in the positive and negatirection

(the direction of slice stacking). This “rounding off” of the ends

is a natural side effect of variational interpolation, and need not be 7 Influence Shapes

explicitly specified.

In this section we present a method of controlling shape transfor-

6.1 Non-Parallel Contours mation by introducing amnfluence shape The idea to use addi-

] ) ) ) ~ tional objects as controls for shape transformation was introduced
In the previous section, we only considered placing constraints by Rossignac and Kaul [24]. Such intermediate shape control can
within planes that are all parallel to one another. There is noth- pe performed in a natural way using variational interpolation. The
ing special about any particular set of planes, however, once we key is to step into a still higher dimension when performing shape
are specifying constraints in 3D. We can mix together constraints transformation.
that are taken from planes at any angle whatsoever, so long as We Recall that to create a transformation sequence between two
know the relative positions of the planes (and thus the constraints). given shapes we added one new dimension, callearlier. We
Most contour mterpola_tlon _procedures cannot integrate data takencan think of the two shapes as being two points that are separated
from slices in several directions, but the variational approach allows along thet dimension, and these two points are connected by a line
complete freedom in this regard. Figure 7 (lower row) shows sev- segment that joins the two points along this dimension. If we be-
eral contours that are placed perpendicular to one another, and thqgin with three shapes, however, we can in effect place them at the
result of using variational interpolation on the group of constraints three points of a triangle. In order to do so we need not just one

from these contours. additional dimension but two, call thesrandit.
As an example, we may begin with three different 3D shapes
6.2 Between-Contour Spacing A, B and C. To each constraint that describes one of the shapes,

we can add two new coordinatesandt. Constraints from shape
Up to this point we have not discussed the separating distance A at (x,y,z) are placed aftx,y,z0,0), constraints from shape
between the slices that contain the contour data. This separatingB are placed afx,y,z 1,0) and shape C constraints are placed
distance has a concrete meaning in medical shape reconstructiorat (x,y,z 1/2,1/2). Variational interpolation based on these 5-
from 2D contours. Here we know the actual 3D separation between dimensional constraints results in a 5D implicit function. Three-
the contours from the data capture process. This “natural” distancedimensional slices of this function along te&limension between
is the separating distanegthat should be used when reconstruct- 0 and 1 are simply shape sequences between shapes A and B when
ing the surface using variational interpolation. Upon reflection, it thet-dimension value is fixed at zero. If, however, thdimension
is odd that some contour interpolation methods do not make use ofvalue is allowed to become positive avaries from 0 to 1, then
the data capture distance between slices. In some cases a medic#he intermediate shapes will take on some of the characteristics of
technician will deliberately vary the spacing between data slices in shape C. In fact, the 5D implicit function actually captures an entire
order to capture more data in a particular region of interest. Us- family of shapes that are various blends between the three shapes.
ing variational interpolation, we may incorporate this information Figure 8 illustrates some members of such a family of shapes.
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Figure 8: Sequence between star and knot can be influenced by a torus (the influence shape) if the path passes near the torus in the five-
dimensional space.
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There is no reason to stop at three shapes. It is possible to place The approach we have presented in this paper re-formulates the
four shapes at the corners of a quadrilateral, five shapes around ashape interpolation problem as an interpolation problem in one
pentagon, and so on. If we wish to use four shapes, then placinghigher dimension. In essence, we treat the “time” dimension just
the constraints at the corners of a quadrilateral using two additional like another spatial dimension. We have found that using the vari-
dimensions would not allow us to produce a shape that was arbi- ational interpolation method produces excellent results, but the
trary mixtures between the shapes. In order to do so, we can placemathematical literature abounds with other interpolation methods.
the constraints in yet a higher dimension, in effect placing the four An exciting avenue for future work is to investigate what other in-
shapes at the corners of a tetrahedrol i 3 dimensions, where  terpolation techniques can also be used to create implicit functions
N is the dimension of the given shapes. for shape transformation. Another issue is whether shape transfor-

There are two related themes that guide our technique for shapemation methods can be made fast enough to allow a user interactive
transformation. The first is that shape transformation should control. Finally, how might surface properties such as color and
be thought of as a shape-creation problem in a higher dimen- texture be carried through intermediate objects?
sion. The second theme is that better shape transformation se-
quences are produced when all of the problem constraints are solved
simultaneously— in our case by using variational interpolation. In- 9 Acknowledgements
fluence shapes are the result of taking these ideas to an extreme.
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Our new approach uses variational interpolation to produce one im-
plicit function that describes an entire sequence of shapes. Specific
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