
Computational Fluid Dynamics in a Traditional Animation Environment

Patrick Witting�

DreamWorks Feature Animation and Squeaky Cat

Abstract

This paper presents a system that uses computational fluid dynam-
ics to produce smoke, water, and other effects for traditionally-
animated films. The system was used in over twenty scenes in the
animated feature film The Prince of Egypt. Animators use images
and animation sequences to drive two-dimensional numerical sim-
ulations of the time-dependent compressible Navier-Stokes equa-
tions. For instance, images can be used to initialize temperature
fields which cause dynamic buoyancy-driven vortices to evolve. In
addition to being image-driven, the system is unique in allowing for
compressibility of the fluid, and in its use of partial differential equa-
tions for texture mapping.

Keywords: animation, animation systems, applications, fluid
simulations, natural phenomena, numerical analysis, physically
based animation, physically based modeling, scientific visualiza-
tion, texture mapping

1 Introduction

Computer graphics simulations of fluid behavior are in demand in
filmmaking for depicting gases, liquids, smoke, dust, fire, and other
natural phenomena. Methods for creating these simulations vary
widely, depending on the requirements for realism, controllabil-
ity, rendering style, and complexity. This paper describes a sys-
tem, which utilizes numerical simulations of the full equations of
fluid dynamics, that is being used at DreamWorks Feature Anima-
tion Studios in the production of traditionally-animated films. The
system employs techniques from both the scientific and computer
graphics communities in order to be both efficient and accessible to
animators.

1.1 Motivation

Of the many ways of incorporating simulation into the creation of
fluids animations, one end of the spectrum in a traditional animation
environment is to use no simulation at all, and draw every frame of
the animation. This approach gives a wide range of flexibility and
control, but is a tedious process with realistic limits on the complex-
ity that can be achieved. At the other extreme, there are many ad-
vantages to numerically solving the full equations of motion for flu-
ids, usually referred to as the Navier-Stokes equations, to create an-

�3763 Lockerbie Lane Glendale, CA 91208
patrick@squeakycat.com

imations of fluid behavior. With simple user set-ups, the physically
accurate equations take over, generating lots of high quality anima-
tion, rich in complexity and guaranteed realistic motion.

Figure 1: Temperature distribution - after 0, 100 and 400 time steps.

Figure 1 shows the results of a buoyancy-driven simulation cre-
ated by simply interpreting the luminance of an image supplied by
the user as the initial condition for the temperature field. The fluid
inside the letters is colder and more dense than the surrounding fluid,
causing it to sink. This is typical of the type of simulation that was
used to generate smoke for The Prince of Egypt, where contours of
temperature were rendered from a simulation driven by buoyant in-
stabilities. This and other examples are discussed in more detail in
section 5.

ACM Copyright Notice
Copyright 1999 by the Association for Computing Machinery, Inc. Permissionto make digital or hard copies of part of this work for personal orclassroom use is granted without fee provided that copies are not made ordistributed for profit or commercial advantage and that copies bear thisnotice and the full citation on the first page or initial screen of thedocument. Copyrights for components of this work owned by others than ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, torepublish, to post on servers, or to redistribute to lists, requires priorspecific permission and/or a fee. Request permissions from PublicationsDept., ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

1.2 Modeling Fluid Behavior for the Sciences

Compared to computer graphics, the equations of fluid motion and
solution methods for them have a long history. Equations express-
ing conservation of mass, momentum, and energy, often referred to
as the Navier-Stokes equations, have been around since the early
1800’s. Sir Horace Lamb’s Hydrodynamics [11], from 1932, is
still regarded as one of the best sources for fundamental theorems,
equations, and solutions in fluid mechanics. The equations of mo-
tion cannot be solved analytically, except in simplified situations,
and therefore need to be solved numerically. Numerical integration
methods for systems of equations predate the modern computer as
well, and John von Neumannenvisioned using the computer to solve
the equations of motion for weather prediction in the 1940’s.

Today, the use of computers to solve the Navier-Stokes equations
is widespread, with descriptions of particular models and their so-
lutions filling the pages of journals such as Journal of Fluid Me-
chanics and Journal of the Atmospheric Sciences. Although com-
putational fluid dynamics is a fairly mature subject, the emphasis so
far has been on accurately simulating physical situations for scien-
tific purposes, rather than creating images and animations as the end
goal, which has different concerns and motivations. One simple ex-
ample of this is the use of artificial compressibility, employed in the
equation set presented in section 3, as a means of speeding up the
calculations. For scientific work, the non-physical compressibility
effects introduced need to be rigorously justified, whereas for the
creation of imagery and animation, the guiding standard is how the
images look.

When the emphasis is on the look of the final images, there are
new sets of concerns about how to control and modify the simula-
tion dynamics, and what and how to render. These concerns move
us into the territory of computer graphics, with the highly practical
production environment driving the process forward.

1.3 Modeling Fluid Behavior for Computer Graph-
ics

Previous work in the graphics literature [2, 4, 6, 7, 9, 12, 13, 14, 16,
19] has modeled various aspects of fluid behavior with an emphasis
on efficiency and controllability issues. Some of this work makes
use of existing velocity fields or allows users to create their own in
a variety of ways, rather than have a simulation determine the veloc-
ity field. The emphasis in this paper is on the use of the full Navier-
Stokes equations to solve for the dynamic velocity and tempera-
ture fields numerically. Kass and Miller [9] solve the shallow water
equations, which reduce the Navier-Stokes equations down to solv-
ing for an evolving height field for the surface of a shallow body of
liquid. Yaeger, Upson, and Myers [19], used two-dimensional time-
dependent vorticity equations to model the atmosphere of Jupiter.
The strongest advocacy for use of the full Navier-Stokes equations
so far in the graphics literature is from Foster and Metaxas [7], who
solve the three-dimensional equations of motion to model smoke.

There may be no right or wrong answer as to what level of phys-
ical modeling is appropriate, in general, but there is usually a de-
cision making process based on the imagery needed to guide this
choice. Creative control and the level of realism desired are two of
the main concerns. The decision making process is well illustrated
in [19], where the end goal, creating animations of Jupiter’s atmo-
sphere for the film 2010, guided aspects from the equations being
solved to their final rendering method. This paper is of that same
style, describing a system built at DreamWorks to support the use
of fluid dynamics simulations in the creation of special effects for
the animated feature film The Prince of Egypt.

1.4 Contributions of this Paper

Some of the unique features of the system described in this paper
include: a compressible version of the equations of motion; the use
of images and animations for controlling the dynamics; fast accurate
texture mapping features; and finally, a complete production system.

The compressible formulation, unlike any in the graphics litera-
ture, allows for the modeling of compressible effects, such as shock
waves, and also provides a mechanism for speeding up flow calcu-
lations by an order of magnitude or more. Another unique feature
of the system is the use of images and animations as input devices,
which allows animators to control initial conditions, source terms,
and movable internal boundaries in an easy and flexible way. The in-
clusion of texture mapping differential equations, another new con-
cept developed here, makes it possible to precalculate particle paths
on a fixed grid which can be used in a straight-forward manner at
render time.

The system also provides fast turn around time. Fourth order ac-
curacy allows animators to use coarser grids, thus saving time. The
use of two-dimensional simulations, the compressible formulation,
and coarser grids, results in fast, useful simulations. Simulations
performed on a 100 by 100 grid are detailed enough for film work
and can be calculated at a rate of one frame per second. Additional
production componentsmake the overall processefficient for the an-
imator.

2 Design Goals

Desirable characteristics of a useful production system which incor-
porates fluid dynamics simulations include the following:

� Simulating a Variety of Flow Situations: The equations be-
ing solved and the solution method should be capable of mod-
eling a wide variety of flow situations, i.e. shear flow insta-
bilities (Kelvin-Helmholtz), vortex motions, buoyant instabil-
ities (Rayleigh-Taylor), Coriolis effects, gravity waves, com-
pressible effects, etc. In addition, arbitrary forcing functions,
or source terms, would be desirable to make many more situ-
ations possible, even those without any physical justification.
Users should have easy access to setting up the various flow
situations.

� Control Throughout the Process: The biggest difference be-
tween simulation systems for scientific purposes and simula-
tion systems for production purposes is the level of control re-
quired in production work. Ideally, animators would control
many aspects of the simulation dynamics and be able to incor-
porate the results into the final scene in a variety of ways.

� Speed: Speed is always a consideration in production work,
because it usually translates into more iterations of the creative
design cycle and a better final result.

� Pipeline: The overall process must make sense within the
context of the production environment. The system should be
able to make use of other scene elements, produce scene ele-
ments in the most convenient formats, and should be part of
an efficient work flow.

� A Variety of Rendering Styles: The rendering style plays an
important role in the overall process. A wide variety of ren-
dering styles increases the expressive power of scene elements
and their interpretation.

3 The Model

The equation set used was derived for a meteorology application, the
study of clouds [10, 18]. The equation set presented in section 3.2
is a simplification of that system which meets the needs discussed
in section 2 in a variety of ways discussed throughout.

3.1 Important Aspects of the Equation Set

Because this formulation of the equations of motion will be unfamil-
iar to many readers, this section has been included to characterize
the equation set in a qualitative manner.

� Conservation of Mass, Momentum, Energy: The system of
five equations and five unknowns is used to express conser-
vation of mass, conservation of the 3 components of momen-
tum, and conservation of energy. Along with the equation of
state, which is an equation for one thermodynamic quantity as
a function of two others, this forms a complete description of
the fluid, i.e. the velocity and thermodynamic state of the fluid
at any point. Given appropriate initial conditions and bound-
ary conditions, the equations can be used to advance the solu-
tion forward in time. At the boundaries, a well-posed problem
can be formed by specifying information for all the variables
except the pressure, where the solution needs to be calculated
[8].

� Compressibility: One of the most important aspects of the
equation set is that there is no assumption of incompressibil-
ity. Not only does this mean that compressibility effects can be
modeled, but the equations can be solved much faster. When
an incompressible formulation is used, there is an elliptical
partial differential equation involved, corresponding to an “in-
finite” speed of propagation of pressure waves. This typically
translates into solving a large matrix equation, usually by iter-
ative techniques, to ensure the pressure field is consistent with
the velocity field. This is usually a time consuming part of the
solution method and does not scale well as grid resolution is
increased. Using the compressible formulation means that cal-
culation times for each time step are essentially linear in the
number of grid points.

� Pressure Equation: Because of the lengthy derivation, the
pressure equation is presented as is. In summary, conserva-
tion of mass is expressed in the compressible equations by the
mathematical statement that changes in density for a parcel of
fluid are the result of divergence in the velocity field.

� Buoyancy: Some systems of equations make an assumption
that the fluid has the same density everywhere, which simpli-
fies the equation set at the expense of not modeling buoyancy
effects. The equations being used here do not make that as-
sumption and buoyancyeffects dominate the dynamics in most
of the examples presented.

� Potential Temperature: Potential temperature is used in me-
teorology as the appropriate measure of static stability, instead
of density, temperature, or other variables which are not con-
served in the atmosphere. For instance, a situation of having
a colder fluid on top of a hotter fluid is not necessarily an un-
stable arrangement, due to the stratified hydrostatic pressure in
the atmosphere. This concept is defined in most meteorology
texts [3]. Throughout this paper “temperature” is often used
in place of “potential temperature” for ease of reading.

� Forcing: The equations also allow for arbitrary forcing func-
tions to each of the equations, except the pressure equation,
corresponding to localized source terms for momentum and

energy. These forcing functions can be analytical functions of
the other variables, such as coriolis or buoyancy terms, or can
come from other sources, such as images and animations.

� Diffusion: Each of the equations includes a diffusion term,
which has the effect of damping out the high frequency waves.
These terms have many interpretations, from molecular diffu-
sion, to turbulence modeling, to numerical stability devices.
Most ODE solvers (ordinary differential equation), including
the fourth order Runge-Kutta scheme employed here, require
some level of diffusion to avoid nonlinear instabilities.

� Passive Scalar: As discussed later, the system can also be
augmented with additional equations, for things such as pas-
sive scalars which advect with the flow. Equations are derived
for including texture mapping information, so that particle tra-
jectories don’t need to be computed via integration later.

3.2 Equation Set

The equations being solved are essentially those in [10]. The sub-
grid scale model is replaced by diffusion terms with constant diffu-
sion coefficients, and the rain processes and coriolis terms are ne-
glected. Also, the coefficient for the sound speed is multiplied by a
constant, introducing artificial compressibility, so that the time step
requirement is less severe. The primary variables being advanced
forward in time are u; v; andw, which are the velocity components
in the x;y; and z directions, respectively, the pressure perturbation
variable, �, defined in equation 9, and the potential temperature, �,
defined in equation 8. The meteorology convention of using z as the
up direction is used here.

Du

Dt
= �cp�

@�

@x
+ ��u+ fu (1)

Dv

Dt
= �cp�

@�

@y
+ ��v + fv (2)

Dw

Dt
= �cp�

@�

@z
+ g

�
� � �
�

�
+ ��w+ fw (3)

@�

@t
=

c2

cp��
2

�
@

@x
(��u) +

@

@y
(��v) +

@

@z
(��w)

�
(4)

D�

Dt
= ���� + f� (5)

D

Dt
is the material derivative operator @

@t
+ u @

@x
+ v @

@y
+w @

@z
,

and� is the Laplacian operator @2

@x2
+ @2

@y2
+ @2

@z2
. g is the acceler-

ation of gravity, �and ��are diffusion coefficients, cp is the specific
heat at constantpressure, c is the speedof sound, andfu; fv; fw; and
f� are forcing functions, or source terms for their respective equa-
tions. Base state variables, denoted by overbars, are time-invariant
functions of z, the vertical coordinate.

The equation of state is the perfect gas law,

p = �RT; (6)

where p is the pressure, � is the density of the fluid, R is the gas
constant, andT is the temperature. Using p0 as a reference pressure,
a non-dimensional pressure, �, is defined by

� =

�
p

p0

�R
cp
; (7)

and a potential temperature, �, by

� = T

�
p

p0

��R
cp

: (8)

Defining a pressure perturbation variable � by

� = � + �; (9)

we assume the base state profiles obey the hydrostatic relationship

@�

@z
=
�g
cp�

; (10)

which reflects that the hydrostatic pressure of a parcel of air is
caused by the weight of a column of air above it.

A two-dimensional version of the above equations can be derived
by assuming that in one of the horizontal directions there is no flow
and no change in any of the variables. Taking y to be the flowless di-
rection, equation 2 is no longer needed, and simplifications are made
to equation 4 and to the material derivative and Laplacian operators
to account for zero derivatives in the y direction.

In addition to the basic equations of fluid motion, equations can
be appendedto the system which may or may not have feedback into
the basic equations. Equation 11 is the prototypical passive scalar
equation, which models an arbitrary scalar being advected along
with the fluid, and optionally diffusing through the non-negativedif-
fusion coefficient � .

D

Dt
= � � (11)

Derivations of the equations of motion from first principles can
be found in many textbooks for the interested reader [3, 11, 15, 17].

3.2.1 Texture Mapping Equations

Figure 2: Texture mapping after 0 and 400 time steps.

A convenient way to record the flow field history is through the dy-
namic evolution of texture map information. The idea is to initial-
ize passive scalar variables with the original positions of the fluid
parcels. These variables would obey equation 11, and let you know
the original location of the parcel at any stage in the simulation, at
the fixed grid locations. This Eulerian description is particularly
useful in the rendering phase, since the texture mapping coordinate
information is evenly spaced in the output image space. This tech-
nique is shown in figure 2 for the same simulation used to produce
figure 1.

Suppose we are running a two-dimensional simulation on a rect-
angular domain of physical dimensionsLxbyLz . Define a horizon-
tal texture map variable, x, with initial condition x(x; z;0) =
x=Lx and a vertical texture map variable, z , with initial condition
 z(x; z;0) = z=Lz . If both of these variables obey equation 11,
then at a later time, t, x(x; z; t) and z(x; z; t) will contain the
texture map coordinates at time t = 0 for the parcel at location x; z
at time t, that is, they tell where the parcel of fluid “came from.”

When implementing periodic boundary conditions, it is more de-
sirable to keep track of displacement offsets from xand zbecause
of the discontinuity of xand zas you cross periodic boundaries.
Defining px = x � x=Lx and pz = z � z=Lz , we arrive at the
following equations

Dpx
Dt

= �u=Lx + �p�px (12)

Dpz
Dt

= �w=Lz + �p�pz (13)

3.3 Solution Method

The solution method for solving the system of equations is the fourth
order Runge-Kutta scheme, using fourth order centered finite differ-
encing for spatial derivatives on a regular grid with equal grid spac-
ing. At boundary points and one point away, one-sided differencing
is used. This solution method is briefly described below:

Ordinary differential equation solvers, such as the Runge-Kutta
methods, solve the vector equation

y
0 = f(y); (14)

y(t0) = y0

The equation set 1 through 5 can be written in this form for the
solution vector y = [u v w � �]T by moving the advective terms
in the material derivatives over to the right hand side of their respec-
tive equations. The advective terms are those not involving partial
derivatives with respect to time. The equations will now look like
equation 14 where the prime in equation 14 denotes differentiation
with respect to time. The right hand side of the equations become
f(y).

The solution vector is initialized with values at the regularly
spaced grid locations, then advanced forward in time according to
the time integration scheme. This involves evaluating the function
f(y) at each of the grid points, making use of the solution vector in
a stencil of grid points surrounding the grid point being evaluated.

First and second derivative terms are replaced by their fourth or-
der finite difference approximations, which can be found in [1]. The
overall method is globally fourth order accurate in space and time,
provided that the initial conditions, boundary conditions, and forc-
ing functions are sufficiently smooth.

The fourth order accuracy is not required for production pur-
poses, but the effort in achieving this added accuracy is not sig-
nificant, and the increased accuracy allows for the use of coarser
grids. For instance, comparing Runge-Kutta fourth order with Eu-
ler’s method, four function evaluations per time step are required for
Runge-Kutta compared with one for Euler, but this is almost offset
by the time steps which can be 2.82 times larger, according to equa-
tion 15.

The time step limitation for stability for the advection problem,
i.e. negligible diffusion, is

�t <
2
p
2

c�
p
nm

�x; (15)

where�t is the time step,�x is the grid spacing,n is the number
of space dimensions, c� is the speed of the fastest moving wave in

the system, andm is a factor that accounts for the spatial differenc-
ing method. For fourth order centered first derivatives, this factor
turns out to be 1.372, compared with 1.0 for second order centered
first derivatives.

Numerical methods for fluid dynamics can be found
in a variety of places [5, 8], and an extensive book
list and summary of available codes can be found at
http://chemengineer.miningco.com/msub74.htm .

4 The Production System

This section describes the actual system built, which reflects the de-
sign goals of section 2, makes use of the model described in sec-
tion 3, and also takes into account additional considerations spe-
cific to the traditional animation environment and the needs of The
Prince of Egypt. In a traditional animation studio, most artwork
and animation is two dimensional; the illusion of depth comes from
the drawn or painted perspective, along with the camera moves and
techniques available in the compositing software.

Many simulation and rendering techniques were used in the vi-
sual development stage of the film. Test animation resulted from
three-dimensional simulations with temperature being visualized
via volume rendering, two-dimensional simulations creating veloc-
ity fields used for line integral convolution of source imagery, as
well as other techniques. By far, the biggest success was two-
dimensional simulations of buoyant instabilities, where the temper-
ature field was visualized as smoke. The plan was to use this tech-
nique to create “magical smoke” for the sequence Playing with the
Big Boys, and the process was streamlined with this in mind.

4.1 Design Decisions

The components described in sections 4.2-4.4 were built to support
two-dimensional simulations which use images and animations as
input. The simulations output information at regular intervals which
is later used in the compositor for rendering. Some of the advan-
tages of these decisions are described below.

� Control Through Layering: Animators can build up libraries
of elements produced by simulations, all of which can be eas-
ily repositioned, scaled, and even put into perspective within
the compositor. The bottom of figure 3 shows two layers and
how they were integrated into the final image above. The top
element was scaled and had animating transforms to match to
the motion of one of the magician’s hands. The lower element
had an animating transform to react to the sliding of one of his
feet. Individual layers allow artists to make independent de-
cisions for colors, opacities, rendering parameters, and trans-
forms.

� Speed: Two-dimensional simulations allow for good interac-
tivity in creating elements for later use. Some of the lower res-
olution final elements used in the film were created in under
two minutes, and even the highest resolution simulations could
be set up using the information gathered in simulations taking
only a few minutes.

� Deferred Rendering:

The texture mapping differential equations developed in sec-
tion 3.2.1 and periodic output from the simulations allow for
deferred rendering, using only a small fraction of the disk
space required to save final images. Deferred rendering means
that no rendering decisions need to be made at simulation time,
and no simulation time is required at render time.

This allows for a flexible system, where simulations can be run
with a specificflow situation and final element in mind, such as

Figure 3: Reactionary elements created by simple transformations.

rising smoke. Artists choose rendering parameters later, e.g.
to alter final timing or to animate contour levels that make the
smoke slowly dissipate. At render time, a library of potentially
useful simulations is already built up, and rendering involves
little more than appropriate resampling (see section 4.4).

4.2 Setting Up and Running Simulations

Although the code is capable of handling more general situations,
such as analytically defined forcing functions, gravitational fields,
and diffusion coefficients, only a subset of the functionality is avail-
able via the user interface. Images define the initial conditions for
velocity and temperature. Scalar variables on the interface aid the
software in interpreting the images, e.g. assigning values to the
black and white limits of the images. Similarly, images and anima-
tions are employed to apply forcing terms to the momentum and en-
ergy equations. In addition, two images are used to optionally assign
profiles to the horizontal velocity and the temperature as functions
of z. This makes it easy to set up shear flows and stratified layers of
density. Figure 4 shows the interface for starting simulations.

Using the simulation starting interface, animators can set other
parameters such as the resolution, boundary condition types, output
frequency, etc., and can monitor simulations in the viewer described
below. If a simulation is evolving unsatisfactorily, an animator can
quickly restart it using modified images or parameter settings. Be-
fore the simulation is run, the system performs a preprocessing step
on the images, essentially resampling them and slightly smoothing
them for the appropriate simulation resolution, and enforcing peri-
odic conditions if needed. It also calculates the initial pressure field
from the temperature field, ensuring that the hydrostatic relationship
is satisfied for vertical columns of fluid. Figure 5 shows the input
image summary before the preprocessing steps. Figures 4 through 6
are taken from example 2 discussed in section 5.

Figure 4: Simulation starter.

4.3 Previewing Simulations

As the simulations are running, or afterward, animators can preview
and optionally render the results to disk via the interface shown in
figure 6. This previewer is a simple mapping of the temperature val-
ues to the luminance of the black and white images. More rendering
options described below are available in the compositor.

4.4 Rendering Simulations

The compositor is a graph-based system (DAG) where rendering
operations are “nodes” in the graph.

� Temperature Contours: Two image generation nodes are
provided in the compositor for rendering the temperature field,
with temperature being mapped in a linear fashion to trans-
parency. Values outside the linear range are clamped to “clear”
or “solid.” One node maps the results of simulations done on a
rectangle with periodic sides onto a circle, as in middle of fig-
ure 8, and the other renders the rectangular temperature field.

All of the parameters, such as the timing and threshold val-
ues, have animation curves. The rendering process involves
reading the data from disk at the simulation resolution and per-
forming resampling with a two-pass, one-dimensional cubic
convolution kernel. It is important to do periodic extensions
before resampling to avoid seams at the periodic boundaries,
and to do thresholding after resampling to avoid stair-step ef-
fects for magnification near the threshold values.

� Volume Rendering: Volume rendering of the thresholded
temperature field was supported for three-dimensional simu-

Figure 5: Input summary before preprocessing.

Figure 6: Simulation viewer.

lations in the visual development phase, but not in the produc-
tion system.

� Texture Mapping: As described in section 3.2.1 and seen in
figure 2, texture mapping is supported in the compositor. In-
puts to this node are an image to be distorted, a simulation
number, a reference time, and a current time. The image is dis-
torted based on the flow field evolution between the reference
time and the current time, using the texture mapping data for
those two times.

� Image Smearing: Another rendering option supported in the
compositor is the smearing of an image via line integral convo-
lution using two-dimensional flow fields provided by the sim-
ulation. A single smearing uses one static flow field and a time
range for the integration, provided by the user. Each output
pixel receives its color from the colors visited along a flow
integration path passing through the output pixel between the
two specified times.

5 Examples

The example times quoted below are for a single processor SGI O2
with R10K floating point chip and processorchip. Calculation times

are given for simulation time steps. Simulation time steps and sim-
ulation time between final frames are roughly equal, for comparison
purposes, using the following logic: According to equation 15, if a
Mach number of 0.4 is used and the largest possible stable time step
is used, then the fluid speed will travel the distance of about one grid
point per time step. Unless the grid is extremely large, structures
moving by one grid point corresponds to a reasonable speed for an
animation. For render times, the quote is for producing 640 by 480
images.

Figure 7: top) Temperature field. middle) Composition in scene.
bottom) Final scene.

5.1 Example 1 - Image Used for Initial Temperature

In the first example, an image defines the initial temperature distri-
bution and drives the dynamics of the simulation. The lettering in
“SI99RAPH” is colder than the surrounding fluid, which causes it to
sink. Conservation of mass dictates that there be areas of return flow
as the cold fluid sinks, creating vortices. There is enough variation

in the initial distribution such that the nonlinear equations result in
pleasing graphic shapes and interesting dynamics.

This simulation was run on a 400 by 300 grid, with periodic sides.
Figure 1 shows the temperature distribution at the start of the simu-
lation and at two later times. Calculation time between time steps is
19.8 seconds,which include the texture mapping calculations. Ren-
der time for frames such as figure 1 is 3.16 seconds per frame.

As described in section 3.2.1, texture mapping information can be
calculated along with the simulation to provide rendering informa-
tion. Particle advection through the dynamically evolving velocity
field is thus precalculated, eliminating the need to calculate particle
trajectories at render time. Figure 2 shows the result of advecting
the colors in an image along with the fluid for the simulation used
to produce figure 1. An average render time for distortions such as
those depicted in figure 2 is 9.8 seconds per frame.

5.2 Example 2 - Constant Heat Flux from Below

The second example simulates heat being introduced at the bottom
of the domain creating “magical smoke” (see figure 7). The initial
temperature distribution is a random noise pattern with an overall
average temperature which is essentially constant except in a nar-
row layer near the bottom, where it is hotter. The images used for
defining the initial conditions are shown in figure 5 and the other in-
put values are the same as those shown in figure 4. The only images
that are not scaled by zero, are the images used to define the unstable
profile and the random perturbations in the initial temperature.

The simulation is performed on a 960 by 321 grid, with the ren-
dering aspect ratio adjusted to make the shapes look taller and thin-
ner than the actual simulation, which would otherwise promote ris-
ing plumes with essentially round circulation patterns. One time
step calculation takes 36.3 seconds, and one rendered frame such as
at the top of figure 7 takes 4.7 seconds to render.

5.3 Example 3 - Periodic Boundary Conditions in
Action

In figure 8, “magical blood” is created by a simulation driven by a
random forcing function in the temperature equation, defined by one
of the input images. Using the circular rendering option and a pe-
riodic simulation domain creates a seamless texture mapping with
the appearanceof blood emanating from the center of the bowl. The
final composite shows the circular shape being repositioned in per-
spective, registered to the bowl. Everything can be defined and ren-
dered in one pass within the compositing package, including the ani-
mating perspective transformation. The simulation resolution is 150
by 151. Time step calculation time is 2.7 seconds per time step and
rendering time is 1.57 seconds per frame.

6 Summary

This paper presents a complete production system which enables
animators to access the beauty and realism embodied in the phys-
ically accurate equations of motion, the Navier-Stokes equations.
With this system, animators can express themselves by controlling
the simulation dynamics through a familiar user interface—the use
of images and animations. Texture mapping features allow deferred
rendering of flow distortions, with no need to recompute particle
trajectories through a time-evolving velocity field. A compressible
formulation and two-dimensional simulations allow for quick turn-
around time in the creative cycle of creating/modifying simulations
and applying the results within the compositor to the final scene.

While this production system emphasizes the needs of a tradi-
tional animation environment, many of the concepts apply outside

Figure 8: top) Temperature on periodic rectangular domain. mid-
dle) Circular domain remapping. bottom) Final scene.

this context as well. All of the equations, including the texture map-
ping equations, extend to three dimensions. One of the most useful
ideas presented here for three-dimensional simulations is the imple-
mentation of an artificial speed of sound through the compressible
formulation of the equations. Atmospheric researchers often use the
compressible formulation because of its computational advantages
over the incompressible formulation, even when using the actual
speedof sound for pressure waves. For computergraphics purposes,
an artificial speed of sound of an order of magnitude less than the
actual one is often justified, and provides a mechanism for dramatic
speed increases.

References

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Math-
ematical Functions, With Formulas, Graphs, and Mathemati-
cal Tables. Dover, 1974.

[2] Cassidy J. Curtis, Sean E. Anderson, JoshuaE. Seims, Kurt W.
Fleischer, and David H. Salesin. Computer-Generated Wa-
tercolor. In Computer Graphics, pages 421–430. ACM SIG-
GRAPH, 1997.

[3] John A. Dutton. The Ceaseless Wind. Dover, 1986.

[4] David S. Ebert and Richard E. Parent. Rendering and Anima-
tion of Gaseous Phenomena by Combining Fast Volume and
Scanline A-buffer Techniques. In Computer Graphics, vol-
ume 24(4), pages 357–366. ACM SIGGRAPH, 1990.

[5] C.A.J. Fletcher. Computational Techniques for Fluid Dynam-
ics. Springer, 1990.

[6] Nick Foster and Dimitris Metaxas. Realistic Animation of
Liquids. In Graphical Models and Image Proc., volume 58(5),
pages 471–483, 1996.

[7] Nick Foster and Dimitris Metaxas. Modeling the Motion of a
Hot, Turbulent Gas. In Computer Graphics, pages 181–188.
ACM SIGGRAPH, 1997.

[8] Bertil Gustafsson, Heinz-Otto Kreiss, and Joseph Oliger. Time
Dependent Problems and Difference Methods. Wiley, 1995.

[9] Michael Kass and Gavin Miller. Rapid, Stable Fluid Dynamics
for Computer Graphics. In Computer Graphics, volume 24(4),
pages 49–57. ACM SIGGRAPH, 1990.

[10] Joseph B. Klemp and Robert B. Wilhelmson. The Simulation
of Three-Dimensional Convective Storm Dynamics. Journal
of the Atmospheric Sciences, 35:1070–1096, 1978.

[11] Sir Horace Lamb. Hydrodynamics. Dover, 1932.

[12] Karl Sims. Particle Animation and Rendering Using Data
Parallel Computation. In Computer Graphics, volume 24(4),
pages 405–413. ACM SIGGRAPH, 1990.

[13] Jos Stam and Eugene Fiume. Turbulent Wind Fields for
Gaseous Phenomena. In Computer Graphics, pages 369–376.
ACM SIGGRAPH, 1993.

[14] Jos Stam and Eugene Fiume. Depicting Fire and Other
Gaseous Phenomena Using Diffusion Processes. In Computer
Graphics, pages 129–136. ACM SIGGRAPH, 1995.

[15] Philip A. Thompson. Compressible-Fluid Dynamics. Rensse-
laer Polytechnic Institute Press, 1988.

[16] Jakub Wejchert and David Haumann. Animation Aerodynam-
ics. In Computer Graphics, volume 25(4), pages 19–22. ACM
SIGGRAPH, 1991.

[17] Frank M. White. Viscous Fluid Flow. McGraw-Hill, Inc.,
1991.

[18] Patrick Witting. Numerical Investigation of Stratus Cloud
Layer Breakup by Cloud Top Instabilities. PhD thesis, Stan-
ford University, 1995.

[19] Larry Yaeger, Craig Upson, and Robert Myers. Combining
Physical and Visual Simulation - Creation of the Planet Jupiter
for the Film “2010”. In Computer Graphics, volume 20(4),
pages 85–93. ACM SIGGRAPH, 1986.

