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ABSTRACT 1 Introduction

In this paper we present a method for recovering the reflectance Computer graphics is being increasingly used to visualize real ob-
properties of all surfaces in a real scene from a sparse set of phojects and environments. Applications in entertainment, architec-
tographs, taking into account both direct and indirect illumination. ture, interior design, virtual reality, and digital museums often re-
The result is a lighting-independent model of the scene’s geom- quire that aspects of the real world be rendered realistically from
etry and reflectance properties, which can be rendered with ar-novel viewpoints and/or under novel illumination. For example,
bitrary modifications to structure and lighting via traditional ren- one would want to see how a room in a house would look like with
dering methods. Our technique models reflectance with a low- different lighting, or how a statue would look at various times of
parameter reflectance model, and allows diffuse albedo to vary arbi-day in a different wing of a museum. Lastly, one might want to
trarily over surfaces while assuming that non-diffuse characteristics realistically render a film location in different lighting, and add in
remain constant across particular regions. The method’s input is adigital props and characters, with the expectation that the rendered
geometric model of the scene and a set of calibrated high dynamicresults would be the same as what would have happened had it all
range photographs taken with known direct illumination. The al- been for real.
gorithm hierarchically partitions the scene into a polygonal mesh,  Work in image-based modeling and rendering e.g. [18, 3, 22,
and uses image-based rendering to construct estimates of both tha9, 12, 9, 6, 29]) has shown that photographs of a scene can be
radiance and irradiance of each patch from the photographic data.used along with geometry to produce realistic renderings of dif-
The algorithm computes the expected location of specular high- fuse scenes under the original lighting conditions. However, chal-
lights, and then analyzes the highlight areas in the images by run-lenges remain in making modifications to such scenes. Whether it is
ning a novel iterative optimization procedure to recover the diffuse changing the geometry or changing the lighting, generating a new
and specular reflectance parameters for each region. Lastly, thes@endering requires re-computing the interaction of light with the
parameters are used in constructing high-resolution diffuse albedosurfaces in the scene. Computing this interaction requires know-
maps for each surface. ing the reflectance properties (diffuse color, shininess, etc.) of each
The algorithm has been applied to both real and synthetic data, surface. Unfortunately, such reflectance property information is not
including a synthetic cubical room and a real meeting room. Re- directly available from the scene geometry or from photographs.
renderings are produced using a global illumination system under  Considerable work (e.g. [32, 16, 5, 27, 21]) has been done to es-
both original and novel lighting, and with the addition of synthetic  timate reflectance properties of real surfaces in laboratory settings
objects. Side-by-side comparisons show success at predicting thefrom a dense set of measurements. However, reflectance properties
appearance of the scene under novel lighting conditions. of real scenes are usually spatially varying, and typically change

CR Categories: 1.2.10 [Artificial Intelligence]: Vision and with use and age, making priori laboratory measurements im-
Scene Understanding—modeling and recovery of physical at- practlce_tl. It would c_IearIy be preferable_to estimate the reflec_tancg
tributes 1.3.7 Computer Graphics]: Three-dimensional Graphics ~ Properties of an entire scene at once, with the surfaces being illumi-
and Realism—color, shading, shadowing, and texture 1Gdfr- natedin situ rather than as |sol_atgd sa_mples, and from a relatively
puter Graphics]: Three-Dimensional Graphics and Realism— SParse set of photographs. This is difficult for two reasons.
Radiosity 1.4.8 [mage Processingj Scene Analysis—Color, pho- The first is that we wish to use o_nIy a sparse set _of photograp_hs
tometry, shading of the scene, rather than exhaustively photograp_hlng every point
of every surface from a dense set of angles. With such a set of
Keywords: Global lllumination, Image-Based Modeling and Ren-  photographs, we can expect to observe each surface point from
dering, BRDF Models, Reflectance Recovery, Albedo Maps, Radi- only a small number of angles. As a result, there will be too little
ance, Radiosity, Rendering data to determine fully general bi-directional reflectance distribu-
tion functions (BRDFs) for each surface. We address this problem
in two ways. First, we limit ourselves to recovering low-parameter
reflectance models of the surfaces in the scene. Second, we as-
sume that the scene can be decomposed into areas with related re-
flectance properties. Specifically, we allow the diffuse reflectance,
or albedq of the object to vary arbitrarily over any surface; the es-
timated albedo is computed as an image calledlaado map. In
contrast, we require that the directional reflectance properties (such
as specular reflectance and roughness) remain constant over each
area. In this work, such areas are specified as part of the geometry
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1The commonly used terrtexture mapis sometimes used to refer to
this same concept. However, texture maps are also sometimes used to store
surface radiance information, which is not lighting-independent.
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recovery process. both real and synthetic data, a description of our data acquisition,
The second problem we face is that in a real scene, surfaces willand synthetic renderings which are compared to real photographs.
exhibit mutual illumination. Thus, the light that any particular sur- Section 8 presents some conclusions and avenues for future work.
face receives will arrive not just from the light sources, but also
from the rest of the environment through indirect illumination. As
a result, the incident radiance of an observed surface is a complex2 BaCkground and Related Work
function of the light sources, the geometry of the scene, and the o ] )
as-yet-undetermined reflectance properties of all of the scene’s sur-The work we present in this paper has been made possible by previ-
faces. In this work, we use radiance data from photographs and©us work in BRDF modeling, measurement and recovery, geometry
image-based rendering to estimate the incident radiances of sur-acquisition, image-based rendering, and global illumination.
faces in the scene. This allows us to estimate the reflectance prop- In graphics, there is a long history of modeling surface re-
erties of the surfaces in the scene via an iterative optimization pro- flectance properties using a small number of parameters. Recent ef-
cedure, which allows us to re-estimate the incident radiances. Weforts in this direction include models introduced in [14, 32, 25, 17].
refer to this procedure asverse global illumination These models have been shown to yield reasonable approximations
Addressing these two problems makes it possible to robustly re- t0 the reflectance properties of many real materials, and they have
cover reflectance parameters from the limited radiance information Pe€en used to produce realistic renderings.
present in a sparse set of photographs, and the accommodations On the other h_and, considerabl_e recent work has presented_ meth-
made are appropriate for a wide variety of real scenes. Even when0ds for measuring and recovering the reflectance properties of
they are not met, the algorithm will compute the reflectance prop- Materials using imaging devices. [32] and [16] presented tech-
erty parameters that best fit the observed image data, which in manyniques and apparatus for measuring reflectance properties, includ-
cases can still yield a visually acceptable result. ing anisotropic reflectlon_. [5] measured directional reflecyance
The input to our algorithm is a geometric model of the scene, a Properties of textured objects. [27] and [21] showed that diffuse
set of radiance maps taken under known direct illumination, and and specular reflectance properties could be recovered from multi-
a partitioning of the scene into areas of similar non-diffuse re- Ple photographs of an object under direct illumination. [36] recov-
flectance properties. The algorithm outputs a set of high-resolution €red reflectance properties of isolated buildings under daylight and
albedo maps for the surfaces in the scene along with their specularWas able to re-render them at novel times of day. [7] estimated ma-
reflectance properties, yielding a traditional material-based model. terial properties of parts of a scene so that they could receive shad-
This output is readily used as input to traditional rendering algo- OWs and reflections from synthetic objects. [10, 20] used a model
rithms to realistically render the scene under arbitrary lighting con- Of the scene and forward radiosity to estimate diffuse albedos to in-
ditions. Moreover, modifications to the scene’s lighting and geom- teractively modify the scene and its lighting. Although mutual illu-
etry and the addition of synthetic objects is easily accomplished Mination has been considered in the problem of shape from shading
using conventional modeling methods. [23], it has not yet been fully considered for recovering non-diffuse
reflectance properties in real environments. A survey of some of
the methods is in Marschner [21].

Certain work ha_s shown that changing the lighting in a scene
does not necessarily require knowledge of the surface reflectance
Reflectance Global > Radiance properties — taking linear combinations of a large set of basis im-
Properties lllumination Maps ages [24, 35] can yield images with novel lighting conditions.
_ Recent wor_k in Ia_ser range scanning and image-based model-
ing has made it possible to recover accurate geometry of real-world
scenes. _A number of robust techniques for _merging multiple range
images into complex models are now available [34, 30, 4, 27].
Reflectance < Inverse Global Radiance For architectural scenes involving regular geometry, robust pho-
Properties lllumination Maps togrammetric techniques requiring only photographs can also be
— employed. The model used in this research was constructed using
such a technique from [9]; however, our basic technique can be used
regardless of how the geometry is acquired.
Figure 1:Overview of the Method This figure shows the relation- Work in global illumination (e.g. [11, 15, 31, 37]) has produced

ship between global illumination and inverse global illumination.  aigorithms and software to realistically simulate light transport in
Gltqba{ |Ilum|naE[|0n léses geometr(y, Ilghtlr&g, ag(_:i reflec;ancg Prop- - synthetic scenes. In this work we leverage the hierarchical subdi-
erties to compute radiance maps {1.€. rendered Images), and INVErse, ;qiq, technique [13, 1] to efficiently compute surface irradiance.
global illumination uses geometry, lighting, and radiance maps to The renderinqs irE tHis] aper Wereyroduged using Gregory Ward
determine reflectance properties. Lareon's RADglANCE syztgm 33 p g Lregory
Photographs taken by a camera involve nonlinearities from the
imaging process, and do not have the full dynamic range of real
1.1 Overview world radiance distributions. In this work we use the high dynamic

range technique in [8] to solve these problems.
The rest of this paper is organized as follows. In the next section
we discuss work related to this paper. Section 3 desciihesse o
radiosity, a stepping stone to the full algorithm which considers 3  Inverse Rad|05|ty
diffuse scenes. Section 4 presents a technique for recovering spec-
ular reflectance properties for homogeneous surfaces consideringMost real surfaces exhibit specular as well as diffuse reflection. Re-
direct illumination only. Section 5 describes how these two tech- covering both diffuse and specular reflectance models simultane-
nigues are combined to produce our inverse global illumination al- ously in a mutual illumination environment is complicated. In this
gorithm. Section 6 completes the technical discussion by describ- section, we consider a simplified situation where all surfaces in an
ing how high-resolution albedo maps are derived for the surfaces environment are pure diffuse (Lambertian). In this case, the global
in the scene. Section 7 presents reflectance recovery results fromllumination problem simplifies considerably and can be treated in
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Figure 2: (a) The lighting and viewing directions at different points on a surface are different with respect to a fixed light source and a fixed
viewpoint. This fact can be used to recover a low-parameter BRDF model for the surface from a singlenyiseayed H;'s are the normals
and halfway vectors between lighting and viewing directions at different locations on the surface. We can infer that surfa@evgttint

normaln; is close to the center of the highlight, and paiitwith normaln; is relatively far away from the center. (b) An example of an
isotropic specular highlight, (c) An example of an anisotropic specular highlight.

the radiosity framework [28]. We definmverse radiosityas recov- ous that the 2-dimensional set of measurements for a single cam-
ering the diffuse albedo at each surface patch in the environment, era/light source pairing is inadequate to do this in general. How-
provided that the geometry, the lighting conditions and the radiance ever for many materials it is possible to approximate the BRDF
distribution in the scene are known. In the next section we will adequately by a parameterized BRDF model with a small number
discuss another simple case — recovering more general reflectancef parameters (e.g. Ward [32], Lafortune [17], He [14] etc). We
models with specularity considering only direct illumination —and use Ward’s parameterization in which the BRDF is modeled as the
we address the full problem in Section 5. sum of a diffuse termé< and a specular term; K (o, ©). Here

In the radiosity framework [28], the surfaces in the environment p, andp, are the diffuse and specular reflectance of the surface, re-
are broken into a finite number of patches. The partitioning is as- spectively, and< («, ®) is a function of vecto®, the azimuth and
sumed to be fine enough that the radiosity and diffuse albedo of elevation of the incident and viewing directions, and parameterized
each patch can be treated as constant. For each such patch, by a, the surface roughness vector. For anisotropic surfaceas

3 components; for isotropic surfaceshas only one component
B; = E; + p; BiF.; 1) and reduces to a scalar. The precise functional fori¥ af, ©) in
p RS
r the two cases may be found in Appendix 1.

This leads us to the following equation for each surface pBjnt
whereB;, E;, andp; are the radiosity, emission, and diffuse albedo,

respectively, of patch, andF}; is the form-factor between patches L, = (p—d +psK(a, ©;))I; 2
¢ andj. The form-factorF;; is the proportion of the total power T

leaving patchi that is received by patcl. It can be shown that  whereL;, I; and ®; are known, and the parameters,p;, o are
this is a purely geometric quantity which can be computed from the unknowns to be estimated. Depending on whether we are using an
known geometry of the environment [28]. isotropic or anisotropic model for the specular term we have a total
We take photographs of the surfaces, including the light sources, of 3 or 5 unknown parameters, while there are as many constrain-
and use a high dynamic range image technique [8] to capture theing equations as the number of pixels in the radiance image of the
radiance distribution. Since Lambertian surfaces have uniform di- syrface patch. By solving a nonlinear optimization problem (see
rectional radiance distributions, one camera position is sufficient for Appendix 1 for details), we can find the best estimatpgp., o
each surface. TheB; and E; in Eqn. (1) become known. Form- There are two important subtleties in the treatment of this op-
factorsFy; can be derived from the known geometry. Once these timization problem. One is that we need to solve a weighted
are donep; = (Bi — Ei)/(3_; B;Fi;). The solution to inverse  |east squares problem, otherwise the larger values from the high-
radiosity is so simple because the photographs capture the final sodight (with correspondingly larger noise in radiance measurements)
lution of the underlying light transport among surfaces. cause a bias in parameter estimation. The second is the use of color
information which needs to be done differently for dielectrics and
. . metals. Both of these issues are discussed in Appendix 1.
4 R_ecove“ng_ Parametenzed BRDFs from To obtain an obvious global minimum for this optimization prob-
Direct Illumination lem and achieve robust parameter recovery, the radiance image

) should cover the area that has a specular highlight as well as some
Before tackling the general case of reflectance recovery from pho- area with very low specular component. If the highlight is missing,

tographs of mutually illuminated surfaces with diffusedspecular  we do not have enough information for recovering specular param-
components, we study another special case. Consider a single sureters, and can only consider the surface to be diffuse.
face of uniform BRDF which is illuminated by a point light source

in known position and photographed by a camera, also in a known . . .
geometric position with respect to the surface(Fig. 2). Every pixel © Recovering Parameterized BRDFs in a

in the radiance image provides a measurement of radiBnoéthe Mutual [lumination Environment
corresponding surface poif; in the direction of the camera, and

the known light source position lets us calculate the irradiaihice ~ We are now ready to study the general case when the environment
incident on that point.

consists of a number of surfaces and light sources with the surface
Our objective is to use these ddt&;, I;) to estimate the BRDF reflectances allowed to have both diffuse and specular components.
of the surface. Since the BRDF is a function of four variables (az-

Consider a poin®; on a surface patch seen by caméta(Fig.
imuth and elevation of incident and viewing directions) it is obvi- 3). The radiance fron®; in the direction of the camera is the re-



For each camera position C
For each polygon T
For each light source O

Obtain the intersection P between plane of T and line CO
(O’ and O are symmetric about T);

Check if P falls inside polygon T;

Check if there is any occlusion between P and O;

Check if there is any occlusion between C and any point
in a local neighborhood of P;

/* A highlight area is detected if P passed all the above tests.*/

End

Figure 4: The specular highlight detection algorithm.

equation similar to Eqgn. (3). From these equations, we can set up a
weighted least-squares problem for each surface as in Appendix 1.
During optimization, we need to gather irradiance at each sample

Figure 3: Patchi, is in the radiance image captured by cam@fa point from the surface patches in the environment. One efficient
The spe-cular co]mponentAtj in the direction of sample poinP; way of doing this is to subdivide each surface into a hierarchy of

is different from that in the direction of came€,. The difference  Patches [13, 1]and link different sample points to patches at differ-
is denoted byAS. ent levels in the hierarchy. The solid angles subtended by the linked

patches at the sample points should always be less than a prescribed
threshold. There is a radiance value from the patch to the sample
point and aA.S associated with each hierarchical link.

For each sample point, we build hierarchical links to a large
number of patches, and gather irradiance from these links. The
L= amount of memory and computation involved in this process limits
Loypi = Boyri + pa 2 Lria; Fria, 3 the number of samples for each highlight area. To make a rea-

®) sonable tradeoff, we note that irradiance from indirect illumination
caused by surrounding surfaces generally has little high-frequency
spatial variation. Because of this, it makes sense to draw two sets
of samples, one sparse set, and one densé detr the samples
in the sparse set, we build hierarchical links and gather irradiance
from the environment as usual. For the samples in the dense set,
only their irradiance from light sources is computed explicitly, their
irradiance from indirect illumination is computed by interpolation.
We are now ready to state the complete inverse global illumi-
nation algorithm. First detect all specular highlight blobs falling
inside the radiance images using knowledge of the positions of the
light sources, the camera poses, and the geometry (Fig. 4). Set the
initial AS associated with each hierarchical link to zero. We can
then recover an initial estimate of the BRDF parameters for each
surface independently by solving a series of nonlinear optimization
problems. The estimated specular parameters are used to update
all AS's and Lp, 4,'s associated with the hierarchical links. With
the updated incident radiances, we can go back and re-estimate the
BRDF parameters again. This optimization and update process is
iterated several times to obtain the final solution of the BRDFs for
all surfaces. The overall algorithm is shown in Fig. 5.

flection of the incident light contributed by all the light sources as
well as all the surrounding surfaces. Eqgn. (2) generalizes to

+ps Zj Lpa;Ko,paj,

where L¢, p; is the radiance value in the direction of caméfa
at some sample poirfe; on the surfaceE¢, p, is the emission in
the direction of cameré’,, Lp, 4; is the radiance value along the
direction from patchA; to point P; on the surfacefp, 4; is the
analytical point-to-patch form-factor [2] between sample pdnt
and patchd;, andp; K¢, p, ; is the specular term evaluatedzat
for a viewpoint at camerg’, and a light source position at patch
Aj. The argumentsx and®, of K have been dropped to simplify
notation.

As before, our objective is to estimajg, ps, and specular
roughness parameters. Of the other variables in Eqn. (3),
Ec,p;, = 0 for nonsources, and¢, p; can be measured directly
from the radiance image at cametq. In general, the radiances
Lp,; a; cannot be measured directly but have to be estimated iter-
atively. Suppose patcH; in the environment appears in another
radiance image taken by camera(Fig. 3). Only if we assumel;
is Lambertian, doed p, 4; in Eqn. (3) equallc, 4,, the radiance
from A; to camera(;,. Otherwise, the diffuse components will be
equal, but the specular components will differ.

Lp,a; = Loy a; + ASc, pa; (4) 5.1 Estimation of AS

HereASc, pa; = Spa; — Sc,a, is the difference between the Suppose there is a_hle_rarqh_lcal litw 4 between_ a sample point
specular component$p,.1, andSc, 4, of the radiances inthe two and a patchd; which is visible to a camer@. (Fig. 6). TheAS
directions. To compute the specular differenceSc, p,4;, we foripa; is deflned to beﬁthe difference of the specular component
need the BRDF of4;, which is initially unknown. The estima- in directionsA; P; and A;C.. To estimate this difference, we need
tion of AS (Section 5.1) therefore has to be part of an iterative to obtain the specular component along these two directions given
framework. Assuming that the dominant component of reflectance the BRDF parameters of patch;. A one-bounce approximation
is diffuse, we can initialize the iterative process witt$ = 0 (this of AS for link Ip, 4, can be obtained by using Monte Carlo ray-
setsLp,a; = Lc; 4;) tracing [32]. Because of off-specular components, multiple rays
To recover BRDF parameters for all the surfaces, we need radi-
ance images covering the whole scene. Each surface patch needs ?We choose the two sets of samples as follows. We first find the center
to be assigned a camera from which its radiance image is selected©f the highlight area in the image plane and rotate a straight line around this

P -1 center to a number of different positions. The dense set of samples is the set
At least one specular highlight on each surface needs to be V'S'bleof points on the surface corresponding to all the pixels on these lines. We

in the set of images, or we will not be able to recover its specular choose the sparse set of samples on each line by separating two consecutive
reflectance and roughness parameters. Each sample point gives asamples by some fixed distance in the object space.




Detect specular highlight blobs on the surfaces. ity that this can be achieved, and lets the whole scene receive

Crg?gge a set of sample points inside and around each highlight more uniform illumination. This also increases the relative
Build hierarchical links between sample points and patches inlthe contribution of the diffuse component at any particular sam-
environment and use ray tracing to detect occlusion. ple point P;, and supports th\S' = 0 initialization, since
Assign to each patch one radiance image and one average radiance  highlights from different sources will usually occur at differ-
value captured at the camera position. ent locations on the surface.
Assign zero taAS at each hierarchical link.
FOIlrzl(t)ﬂs:alcthoh’\ilerarchical link e Use concentrated light sourcel the incoming radiance dis-
use itsA S to update its associated radiance value; trlk_)utlon IS not very d_|rec_t|onal,_the specul_ar_hlghllghts will be
For each surface quite extended and it will be difficult to distinguish the spec-
optimize its BRDF parameters using the data ular component from the diffuse one.
from its sample points;
For each hierarchical link, . .
estimate its\ S with the new BRDF parameters. 6 Recovering Diffuse Albedo Maps

End

In the previous sections, we modeled the reflectance properties as
Figure 5: Theinverse Global llluminatioralgorithm. being uniform for each surface. In this section, we continue to do so
for specular parameters because a small number of views of each
surface does not provide enough information to reliably estimate
specular parameters for each point individually. However, we relax
this constraint on diffuse albedo and model it as a spatially varying
function, analbedo mapon each surface. The diffuse albedo for
any pointz on a surface is computed as:

pa(x) = wD(z)/1(z) ()

wherepq () is the diffuse albedo ma@) (z) is the diffuse radiance
map, and/ () is the irradiance map.

Suppose there is an image covering the considered surface which
gives aradiance map(z) = D(z)+ S(z) whereS(z) is the spec-
ular radiance map seen from the image’s camera position. Then the
diffuse radiance map in Eqn. (5) can be obtained by subtracting
the specular component from each pixel of the radiance biap
Figure 6: Random rays are traced around the two cones to obtain ausing the specular reflectance parameters already recovered. We
one-bounce approximation dfS. estimate the radiance due to specular reflection as the sum of spec-
ular reflection due to direct and indirect illumination. The specular
reflection due to direct illumination is computed from the knowl-

should be traced and the direction of the rays is randomized around€dge of the direct lighting and the estimated reflectance properties,
the mirror directions of4; P; and A;C}, respectively. For each and we estimate the indirect specular reflectance by tracing a per-
possible ray direction, the probability density of shooting a ray in turbed reflected ray into the environment in a manner similar to that
that direction is proportional td& (a;, ®) where® encodes the in Section 5.1. .

incident and outgoing directions. Intuitively, most of the rays fall ' he irradiancd (z) can be computed at any point on the surface
inside the two cone€p, , andQc, 4, centered at the two mir- from the direct illumination and by using analytical point-to-patch
ror directions. The width of each cone depends on the Specu|arf0rm-fact0rs [2] as in previous sections of this paper. For efficiency,

roughness parametees; of patch A;. The radiance along each we compute the irradiance due to the indirect illumination only at
ray is obtained from the patch hit b)]/-the ray. Suppbsg. , and certain sample points on the surfaces, and interpolate these indirect
. e

I th di | fth d the tw irradiance estimates to generate estimates for all surface paints
Qcy,a; A€ n€average radiance vajues ot the rays around th€ ot o yrse, care must be taken to sufficiently sample the irradiance

cones, respectively, anel . is the specular reflectance of patch in regions of rapidly changing visibility to the rest of the scene.

A;. Because the average value of Monte Carlo sampling approxi-  Something that complicates estimating diffuse albedos in this
mates the total irradiance modulatedi§yo ;, ®), AS can simply manner is that in highlight regions the specular component of the
be estimated ag , (LQPiAj = LQc, 4, ). This calculation could reflectanceS(z) will be much larger than the diffuse component
be extended to have multiple bounces by using path tracing [15]; D(z). As aresult, relatively small errors in the estimaggad) will

we found that the one-bounce approximation was adequate for ourcause large relative errorsI(x) and thusps (). However, just as
purposes. a person might shift her view to avoid glare while reading a movie
poster, we make use of multiple views of the surface to solve this
problem.

Suppose at a pointon a surface, we have multiple radiance val-
We do not have a formal characterization of the conditions under ues{Lx(z)}}_, from different images. The highest value in this
which the inverse global illumination algorithm converges, or of set will exhibit the strongest specular component, so we simply re-
error bounds on the recovered BRDF parameter values. In practice,move this value from consideration. For the remaining values, we
we found it worked well (Section 7). Here we give some heuristic Subtract the corresponding specular estimatg@) from the ra-
advice on how to acquire images to obtain good performance. diance valued ;. (), to obtain a set of diffuse radiance estimates

Dy (z). We compute a final diffuse radiance componBxitz) as a
e Use multiple light sources. A specular highlight directly weighted average of thB, (x ), with weights inversely proportional
caused by one of the light sources should be captured on eachto the magnitude of the estimated specular componépfs) to
surface. Having multiple light sources increases the probabil- minimize the relative error iD(z). We also weight theD;.(z)

5.2 Practical Issues



values proportionally to the cosine of the viewing angle of the cam- | | pa [ p: [ ae(0) [ ay [ 2 |

era in order to reduce the influence of images at grazing angles; gue 5 8-2182% 8-231871 8-295764 8-830520 00 _—
H H B . ecovere . . . . -0.

syc_h obll_que images typically have poor texture resolution and €X- Eror%) | 6.10 >ad 071 173

hibit particularly strong specular reflection. Since we are combin- == 01 o1 03

ing information taken from different images, we smooth transitions ["Recovered| 0.107364 | 0.103015| 0.300104

at image boundaries using the image blending technique in [9]. Error(%) | 7.36 3.02 0.06

Once diffuse albedo maps are recovered, they could be used tg_True 0.1 0.01 0.1
separate the diffuse and specular components in the specular high Eﬁ‘;%z;ed 8'é20875 2'%0477 2‘%21363
light areas. This would allow recovering more accurate specular pa- : : :

. : True 0.3 0.02 0.15
rameters in the BRDF model. In practice, however, we have found [Recovered| 0.301775 | 0.021799 | 0.152331

good estimates to be obtained without further refinements. Error(%) | 0.59 8.90 1.55
True 0.2 0.05 0.05
Recovered| 0.206312 | 0.050547 | 0.050291
Error(%) 3.16 1.09 0.58
7 Results True 0.2 0.1 0.05 0.3 45
Recovered| 0.209345 | 0.103083 | 0.050867 | 0.305740 | 44.997876
7.1 Results for a Simulated Scene Error(%) | 4.67 3.08 173 1.91

Table 1: Comparison between true and recovered BRDF parame-
We first tested our algorithm on a simple simulated cubical room ters for the six surfaces of a unit cube. The first and last surfaces
with mutual illumination. This allowed us to verify the accuracy 1Nave anlsotaoplc stﬁ)ecular reflection. 'I('jhehy have two mor$ %arame-
of the algorithm and compare its results to ground truth. All the ters: second roughness parametgrand the orientatiory of the

X I principal axes in a local coordinate system. The errors shown are
six surfaces of the room have monochromatic diffuse and specularina combined errors from both rendering and recovering stages.
components, but each one has a distinct set of parameters. Each otfh
the surfaces has spatially uniform specularity. We assigned two sur-
faces to be anisotropically specular and added 10-20% zero mea -

piea’y sp . n7.2.1 Data Acquisition

white noise to the uniform diffuse albedo of two surfaces to sim-
ulate spatial variations. We used the RADIANCE rendering sys- e jlluminated the scene with three heavily frosted 3-inch diam-
tem [33] to produce synthetic photographs of this scene. Six of eter tungsten light bulbs. Using high dynamic range photography,
the synthetic photographs were taken from the center of the cube,ye verified that the lights produced even illumination in all direc-
with each one covering one of the six surfaces. Another set of siX tions. A DC power source was used to eliminate 60Hz intensity
zoomed-in photographs were taken to capture the highlight areas.f|,ctuations from the alternating current power cycle.

The scene was illuminated by six point light sources so that specu-  \\e used a Kodak DCS520 color digital camera for image acqui-
lar highlights could be observed on each surface. These twelve im-gjtion. The radiance response curve of the camera was recovered
ages along with the light source intensity and positions were used using the technique in [8]. We used a wide-angle lens with a 75
to solve the BRDF parameters. The images of the specular high-gegree field of view so that we could photograph all the surfaces in
lights are shown in Fig. 7. Some of the highlights are visually very the scene from a few angles with a relatively small number of shots.
yveak, but cor_re_spondlng parameters can still be recovered_num_er-,:or:[y high dynamic range radiance images, shown in Fig. 8, were
ically. The original and recovered BRDF parameters are given in acquired from approximately 150 exposures. Twelve of the images
Table 1. For the last two surfaces with noisy diffuse albedo, the \yere taken specifically to capture specular highlights on surfaces.
recovered albedo _values are compared tg the true average values. The radiance images were processed to correct for radial light
The total running time for BRDF recovery is about half an hour on  f5)1off and radial image distortion. Each of these corrections was
a SGIO» 180MHz workstation. modeled by fitting a polynomial of the fort+ ar? + br? to cali-

The numerical errors shown in Table 1 are obtained by com- bration data captured with the same lens settings used for the scene
paring the recovered parameters with the original ones. There areéimages. To reduce glare and lens flare, we shaded the lens from
three sources of error: BRDF modeling error, rendering error, and directly viewing the light sources in several of the images. Re-
BRDF recovery error. BRDF modeling error comes from the in- gions in the images corresponding to the light stands (which we
ability of a given BRDF model to capture the behavior of a real did not model) or where excessive remaining glare was apparent
material. By using the same model for recovery that RADIANCE  were masked out of the images, and ignored by the algorithm. The
uses for rendering, BRDF modeling error was eliminated for this thin cylindrical light stands which appear in the synthetic render-
test. However, because RADIANCE computes light transport only ings have been added to the recovered model explicitly.
approximately, rendering error is present. We thus cannot deter-  The radiance images were used to recover the scene geometry
mine the exact accuracy of our BRDF recovery. However, the test gnd the camera positions (Fig. 9) using thede[9] modeling
demonstrates that the algorithm works well in practice. system. Segmentation into areas of uniform specular reflectance

was obtained by having each polygon of each block in the model
(e.g. the front of each poster, the surface of each whiteboard, the top
7.2 Results for a Real Scene of each table) have its own uniform specular reflectance parameters.
The positions and intensities of the three light sources were re-
In this section we demonstrate the results of running our algorithm covered from the final three radiance images_ During BRDF re-
on areal scene. The scene we chose is a small meeting room withcovery, the area illumination from these spherical light sources was

sc_)me furniture and two whiteboards; we also decorated the room computed by stochastically casting several rays to each source.
with colored cards, posters, and three colored metallic sp’neres

Once the BRDFs of the materials were recovered, we were able to7 22 BRDFR
re-render the scene under novel lighting conditions and with added " - ecovery

virtual objects. Given the necessary input data, our program recovered the surface
BRDFs in two stages. In the first stage, it detected all the high-

3The spheres were obtained from Baker's Lawn Ornaments, 570 Berlin light regions and recovered parametrized BRDFs for the surfaces.
Plank Road, Somerset PA 15501, (814) 445-7028. In this stage, even if a surface had rich texture, only an average dif-




Figure 7: Synthetic grey-scale images of the interior of a unit cube in the presence of mutual illumination. These are used for recovering the
BRDF model of each surface. The top row shows the six images taken at the center of the cube with each one covering one of the six surfaces.
The bottom row shows the six zoomed-in images taken to capture one specular highlight area on each surface. The first and last surfaces have
anisotropic specular reflection. The last two surfaces have 20 and 10 percent zero mean white noise added to their diffuse albedo, respectively.

| | pa(red) | pa(green)| pa(blue) | ps(red) | ps(green)| ps(blue) | o |
whiteboard | 0.5794 | 0.5948 | 0.6121 | 0.0619 ] 0.0619 | 0.0619 | 0.0137
roundtable top| 0.7536 | 0.7178 | 0.7255 | 0.0366 | 0.0366 | 0.0366 | 0.0976

door 0.6353 | 0.5933 0.5958 | 0.0326 | 0.0326 0.0326 | 0.1271
wall 0.8543 | 0.8565 0.8036 | 0.0243 | 0.0243 0.0243 | 0.1456
poster 0.1426 | 0.1430 0.1790 | 0.0261 | 0.0261 0.0261 | 0.0818

red card 0.7507 | 0.2404 0.3977 | 0.0228 | 0.0228 0.0228 | 0.0714
yellow card | 0.8187 | 0.7708 0.5552 | 0.0312 | 0.0312 0.0312 | 0.1515
teal card 0.4573 | 0.5951 0.5369 | 0.0320 | 0.0320 0.0320 | 0.1214
lavender card| 0.3393 | 0.3722 0.4437 | 0.0077 | 0.0077 0.0077 | 0.1144

red ball 0 0 0 0.5913 | 0.1862 0.3112 0
green ball 0 0 0 0.2283 | 0.3694 0.3092 0
blue ball 0 0 0 0.2570| 0.3417 0.4505 0

Table 2: BRDF parameters recovered for the materials in the test room. All of them are isotropic, and most of them are plastic. The balls are
metallic.

fuse albedo was recovered. Surfaces for which no highlights were 7.2.3 Re-rendering Results
visible the algorithm considered diffuse. The second stage used
the recovered specular reflection models to generate diffuse albedd/Ve directly compared synthetic images rendered with our recov-
maps for each surface by removing the specular components. ered BRDF models to real images. In Fig. 13, we show the com-
parison under the original lighting conditions in which we took the
The running time for each of the two stages was about 3 hours images for BRDF recovery. In Fig. 14, we show the comparison
on a Pentium Il 300MHz PC. The results show our algorithm can under a novel lighting condition obtained by removing two of the
recover accurate specular models and high-quality diffuse albedojights and moving the third to a new location, and adding a new
maps. Fig. 10 shows how specular highlights on the white board object. There are a few differences between the real and synthetic
were removed by combining the data from multiple images. Fig. 11 images. Some lens flare appears in the real images of both figures,
shows the albedo maps obtained for three identical posters placed ajvhich we did not attempt to simulate in our renderings. We did
different places in the room. Although the posters were originally not model the marker trays under the whiteboards, so their shad-
seen in different illumination, the algorithm successfully recovers ows do not appear in the synthetic images. In Fig. 14, a synthetic
very similar albedo maps for them. Fig. 12 shows that the algorithm secondary highlight caused by specular reflection from the adjacent
can remove “color bleeding” effects: colors reflected onto a white whiteboard appears darker than the one in the real image, which
wall from the cards on the table do not appear in the wall’s diffuse js likely due to RADIANCE's approximations for rendering sec-
albedo map. Table 2 shows the recovered specular parameters angndary specularities. However, in both figures, real and synthetic
average diffuse albedo for a variety of the surfaces in the scene. Weimages appear quite similar.
indicated to the program that al[the materials are isotropic, and that Fig 15 shows four panoramic views of the rendered scene. (a)
the metallic spheres only have ideal specular compohents shows the hierarchical mesh with the initial estimates of radiance
obtained from the images. (b) shows the entire room rendered
in the original illumination. (c) shows the entire scene rendered
with novel lighting. The original lights were removed and three
4For surfaces that have only ideal specular reflection, such as mirrors, track lights were virtually installed on the ceiling to illuminate the
there is no diffuse component and the roughness parameter is zero. We carPOSters. Also, a strange chandelier was placed above the spheres
still recover their specular reflectange from a single image by noting that ~ on the table. The new lights reflect specularly off of the posters
the specular reflectance can be computed as the simple ratio between twaand the table. Since the chandelier contains a point light source, it
oo s o ety sk e cpor a0 casts a hard shadow around the midsecton of the foom. The in
thein L . . . . .
the other is the radiance value of the environr)leent along the reflectec?ray. m’terlor O,f the chandelier shade is turquoise colored which results in
practice, we shoot a collection of rays from the camera position to obtain turquoise shadows under the spheres. A small amount of synthetic
the average reflectance. glare was added to this image. (d) shows the result of adding syn-




thetic objects to various locations in the room, including two chairs, by the two principal axes. To compuig v, which relates this coordinate system to
a crystal ball, two metal boxes, and a floating diamond. In addition, the canonical coordinate system, is necessary. o

Now to parameter recovery. We wish to fipd,, ps and o that minimize the
a very large orange sculpture, was placed at the back of the room.squared error between the measured and predicted radiance,
All of the objects exhibit proper shadows, reflections, and caustics.
The sculpture is large enough to turn the ceiling noticeably orange dd pa )
due to diffuse interreflection. The video for this paper shows a fly- e(pa, ps, o) = E (Li = L — ps K, @) 1)

through of each of these scenes. i=1

®)

where L; is the measured radiance aifid is the irradiance (computable from the
known light source position) at sample popit on the surface, angh is the number

of sample points.

. . L Note that given a guess ef, K (o, ®;) becomes a known quantity, and mini-

In this paper we have presented a new technique for determining mizing the errore reduces to a standard linear least-squares problem for estinating
reflectance properties of entire scenes taking into account mutual@ndss. Plugging in these values in the right hand side of Eqn. (8) lets us comaste

. X . . . . a function ofa. The optimization problem thus simplifies to a search for the optimum
'Hum'na_t'on- T_he Proper“es recovered include diffuse reflectance yaiye ofe to minimizee(a). This is either a one-dimensional or three-dimensional
that varies arbitrarily across surfaces, and specular reflectance pasearch depending on whether an isotropic or anisotropic model of the specular term is
rameters that are constant across regions The technique takes #eing used. We use golden section search [26] for the isotropic case, and the down-
. . ’ . . il simplex method [26] in the anisotropic case. It is convenient that neither method
input a sparse set of geome_mca”y and _photome_t_rlcally calibrated requires evaluating the derivativ&(cx), and both methods are fairly robust.
photographs taken under calibrated lighting conditions, as well as a  To deal with colored materials, we estimate both diffuse and specular reflectance
geometric model of the scene. The algorithm iteratively estimates

in each of the red, green, blue color channels. The specular roughness parameters
irradiances, radiances, and reflectance parameters. The result is

8 Conclusions and Future Work

are the same for all color channels. The nonlinear optimization is still over 1 or 3
-9 1 | e Parameters, since givam, pg andp. estimation for each channel remains a linear
characterization of surface reflectance properties that is highly con- least squares problem.
sistent with the observed radiances in the scene. We hope this work To make the parameter estimation additionally robust, we make two simple exten-
X L R i sions to the basic strategy derived above. The first is to solve a weighted least squares
will be a useful step towards bringing visual spaces from the real problem instead of the vanilla version in Eqn. (8). Radiance measurements from the
world into the virtual domain, where they can be visualized from highlight area have much larger magnitude than those from the non-highlight area.
; : : ; P : Correspondingly the error in those measurements is higher both because of noise in
any fa_ngl_e' with any_“ghtmg' and with addltlo_ns, _d6|etlons’ and imaging as well as error in the BRDF model. Giving all the terms in (8) equal weight
modifications according to our needs and imaginations. causes biased fitting and gives poor estimation of the diffuse reflectance. From a sta-
There are a few directions for future research. We wish to apply tistical point of view, the correct thing to do is to weight each term by the reciprocal
. . . of the variance of expected error in that measurement. Not having a good model for
our teChqu_e to more g_enera_l geometrical and phOtomet_r'c data, the error term, we chose a heuristic strategy in which the weighfor the i-th term
such as multispectral radiance images and geometry accquired fromin the summation in Eqn. (8) is set gz Wherea.. is somead hocor iter-
laser scanners. It would be of significant practical value to be able atively improved roughness vector. Since the roughness of most isotropic materials is
to calibrate and use existing or natural illumination in recovering lessthan 0.2, we used an initial value between 0.1 and 0.2 for sealar .
flectan roperties. The algorithm should be more robust to er- The second refinement to improve parameter recovery is to use specular color in-
reflectance propertes. gol ] L formation. For instance, specular highlights on dielectric and plastic materials have the
rors in the geometric model, misregistration of the photographs, same color as the light source, while the color of specular highlights on metals is the
h i same as their diffuse components, which is the color of the light modulated by the dif-
and err_ors in the “ght So.urce mgasurements' ".: would also .be of fuse albedo. For plastic objects, there would be one distinct varigbfer each color
theoretical value to obtain conditions under which the algorithm channel, but the same variabpe for all color channels. For metallic objects, there

converges. would be one variablg, for each channel and a common ratio between the specular
and diffuse reflectance in all channels. Thus, we can reduce the degree of freedom
from 2N to N+1 whereN is the number of color channels. For plastic, we can still
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Figure 8: The complete set of forty radiance images of the room used to recover reflectance properties. Except for a few small areas, every
surface in the room was seen in at least one radiance image. Each radiance image was constructed from between one and ten digital pictures
depending on the dynamic range of the particular view. Black areas indicate regions which were saturated in all input images, and are not
used by the recovery algorithm. The last three radiance images, reproduced ten stops darker than the rest, intentionally image the light bulbs.
They were used to recover the positions and intensities of the sources.
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Figure 9: The model of the room, photogrammetrically recovered from the photographs in Fig 8. The recovered camera positions of the forty
photographs are indicated.
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Figure 10: The left picture is a radiance image of a whiteboard, showing strong specular highlights. The right picture shows the diffuse albedo
map of the whiteboard recovered from several images. Unlike the radiance image, the diffuse albedo map has a nearly uniform background,
and is independent of the illumination.

Figure 11: The diffuse albedo maps of three posters with the same texture. The posters were placed at different locations in the real scene
with different illumination. Nonetheless, the recovered albedo maps are nearly the same. For identification purposes, a small yellow square
was placed in a different location on the lower right of each poster.

Figure 12: The left image shows a part of a wall that becomes noticeably colored from light reflecting from the cards placed on the table
below, an effect known as “color bleeding”. The right image shows the recovered albedo map of the same part of the wall. It is nearly
uniform, showing that the color bleeding was properly accounted for. The black line indicates where the table top aligned with the wall.
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Figure 13: A comparison between real images (top) and synthetic renderings of our room with the recovered reflectance parameters (bottom).
The simulated lighting is the same as in the original pictures, and the synthetic viewpoints have been matched to the recovered camera
positions of the real images. The images show that good consistency was achieved.

Figure 14: A comparison between real and virtual, this time with novel lighting. Two of the lights were switched off and the third was
moved to a new location. In addition, a real mirrored ball was placed on the red card. The scene was photographed from two locations and
these real views are shown in the top row. To render the bottom row, we recovered the camera positions and light source position in the top
views, estimated the material properties and position of the ball, and added a virtual ball to the model. The main noticeable difference is
camera glare; however, some inaccuracies in the model (e.g. the whiteboard marker tray was not modeled) are also apparent. Otherwise, the
illumination of the scene and appearance and shadows of the synthetic object are largely consistent.
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(b) Synthetic rendering of recovered properties under original illumination.

(c) Synthetic rendering of room under novel illumination.

(d) Synthetic rendering of room with seven virtual objects added.

Figure 15: Panoramic renderings of the room, with various changes to lighting and geometry.



